Mathew Watson

Associate ProfessorMatt James Watson

Link Rm 402
Internal Phone: 93803
My research focuses on additive manufacturing of supports for industrial catalysis and ultra high temperature electrolytic reduction of metal oxides.

Qualifications & Memberships

Research Interests

My research interests are in additive manufacturing of structured catalyst and adsorbent supports, high-temperature electrolytic reduction of metals, new applications for oxy-fuel combustion, domestic production of maple syrup, and oxygen generation from waste heat.

I am investigating optimized structured catalyst and adsorbent supports, for example to increase heat transfer and surface area while minimizing pressure drop, and using additive manufacturing as a means to build and experimentally confirm the structure-property relationships.

I am studying the feasibility of using high-temperature electrolysis to produce titanium metal from iron-sands slag. In addition, I am investigating using waste heat coupled with mixed metal oxide materials to produce oxygen through a high-temperature sorption process based on periodic swings in temperature and pressure of the sorbate.

I am interested in using oxy-fuel combustion for agricultural domestic animal crematory applications during a virulent disease outbreak such as Aphthae epizooticae (foot-and-mouth disease).

I am researching the economic potential, and best locations in New Zealand for maple tree plantations in order to commercially produce maple sap, and investigating alternative processes to vastly improve the energy cost associated with sap concentration to syrup.

Recent Publications

  • Weaver NJ., Wilkin GS., Morison KR. and Watson MJ. (2020) Minimizing the energy requirements for the production of maple syrup. Journal of Food Engineering 273
  • Baharudin L., Yip ACK., Golovko V., Polson M., Aguey-Zinsou K-F. and Watson M. (2019) CO oxidation and the inhibition effects of carboxyl-modification and copper-clusters on multi-walled carbon nanotubes. Applied Catalysis B: Environmental 262 118265
  • Baharudin L., Yip ACK., Golovko V., Polson MIJ. and Watson MJ. (2019) CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water-gas shift reaction. Chemical Engineering Journal 377 120278
  • Baharudin L. and Watson MJ. (2018) Erratum to: Monolithic substrate support catalyst design considerations for steam methane reforming operation (Reviews in Chemical Engineering (2018) 34:4 (481-501) DOI: 10.1515/revce-2016-0048). Reviews in Chemical Engineering 34(5): 741.
  • Baharudin L. and Watson MJ. (2018) Monolithic substrate support catalyst design considerations for steam methane reforming operation. Reviews in Chemical Engineering 34(4): 481-501.