We use atomic clusters as building blocks for the formation of nano-electronic devices, and explore the novel properties of those devices. Over the past few years we have developed cluster-based devices with applications ranging from chemical sensors to magnetic field sensors to transistors.

We are currently focusing on understanding novel switching behavior in these devices, similar to the behaviour of memristors. We have found that atomic scale wires are formed in tunnel gaps within a percolating film, leading to quantised conductances and cascades of switching events that resemble the learning processes in the human brain. Because the structures are similar to those in the brain, these ‘neuromorphic devices’ show promise for computational tasks (like image processing) that the brain is good at, but which even modern supercomputers find difficult.

More information:

  1. Brain-like Behaviour
  2. A computer that thinks like the brain
  3. Deposition of Atomic Clusters
  4. Percolation and Tunneling
  5. Switching (“Memristor”) effects
  6. Superconductivity