School of Physical and Chemical Sciences Te Kura Matū Seminar Series

Rational Design of Photoactive Molecules: From Molecular Electronics to Photoredox Catalysis


Christopher Larsen


Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland

Time & Place

Wed, 17 Oct 2018 12:00:00 NZDT in Room 701, Level 7, WEST

All are welcome


This presentation shall focus on our recent developments of rationally-designed photoactive compoundss for sophisticated molecular electronic technologies and photoluminescent transition-metal complexes for energetically-demanding net redox-neutral photoredox catalysis.

The ultimate goal of molecular electronics is the ability to develop fully-integrated circuitry at the molecular scale, and by extension, single-molecule circuitry. In order to achieve this, electron-transfer must be reliably controlled in multidimensional architectures. In this presentation, the very first example of net circular photoinduced electron-transfer as a proof-of-concept for a photoinitiated molecular circuit,[1] and electron-transfer around a molecular corner as a building block towards molecular electronic grids,[2] shall be discussed.

Photoredox catalysis is rapidly developing as an alternative, sustainable approach for many chemical transformations due to its mild reaction conditions, wide functional group tolerance and lack of stoichiometric toxic reagents.[3] One class of underdeveloped photoredox transformations are the net redox-neutral reactions, as these reactions are too energetically demanding for conventional precious-metal catalysts. In this presentation, our recent efforts to develop powerful photoredox catalysts capable of performing these reactions and to develop photoluminescent earth-abundant metal complexes as replacements for precious-metal complexes as photoredox catalysts shall be discussed.[4-7]


[1] C. B. Larsen, O. S. Wenger, Angew. Chem. Int. Ed., 2018, 57, 841-845

[2] H. C. Schmidt, C. B. Larsen, O. S. Wenger, Angew. Chem. Int. Ed., 2018, 57, 6696-6700

[3] C. B. Larsen, O. S. Wenger, Chem. Eur. J., 2018, 24, 2039-2058

[4] L. A. Büldt, X. Guo, A. Prescimone, O. S. Wenger, Angew. Chem. Int. Ed., 2016, 55, 11247-11250

[5] L. A. Büldt, X. Guo, R. Vogel, A. Prescimone, O. S. Wenger, J. Am. Chem. Soc., 2017, 139, 985-992

[6] L. A. Büldt, C. B. Larsen, O. S. Wenger, Chem. Eur. J., 2017, 23, 8577-8580

[7] C. B. Larsen, O. S. Wenger, Inorg. Chem., 2018, 57, 2965-2968