James Brasington

Joint Professorial Chair in Water Resource ManagementJames Brasington

Julius von Haast Level 7
Internal Phone: 90154
My research focuses on the development of new methods to monitor and numerically model the feedbacks between river forms, processes and hazards.

Research Interests

My research focuses on the links between the Earth’s surface morphology and the physical processes that shape it. This relationship is two way, as topography exerts a primary control on the distribution and intensity of geophysical flows which in turn, shape our landscapes through erosion and sedimentation. I am fortunate to be working on this theme now as the geosciences undergo a technological revolution that is transforming the measurement of topography. This step-change is driven by the emergence of new Earth observation platforms and sensors, in particular airborne and terrestrial laser scanners and methods to model landforms in three dimensions from ground-based, aerial and satellite imagery. Datasets which capture the geometry of integrated landscapes, built upwards from their particle scale building blocks, are fast becoming a reality.

This data revolution has far reaching consequences, offering insights into the scaling of topography, non-invasive methods to quantify landscape form across multiple spatial scales and a framework to measure 3D change and sediment budgets robustly. Perhaps more fundamentally, these data offer new opportunities to develop novel tools to parameterize and test numerical models in order to better predict the dynamics of the key geophysical flows which both supply and threaten our growing populations.

Within this broad theme, my research has focused on river and catchment dynamics with notable highlights including:

• Geospatial monitoring and modelling of river form and dynamics

• Designing benchmark methods for quantifying geomorphic change.

• Numerical modeling of river hydrodynamics and morphodynamics.

• Discrete &individual based modelling of environmental systems.

Recent Publications

  • Batalla RJ., Gibbins CN., Alcázar A., Brasington J., Buendia C., Garcia C., Llena M., López R., Palau A. and Rennie C. (2021) Hydropeaked rivers need attention. Environmental Research Letters 16(2) http://dx.doi.org/10.1088/1748-9326/abce26.
  • Reesink AJH., Darby SE., Sear DA., Leyland J., Morgan PR., Richardson K. and Brasington J. (2020) Mean flow and turbulence structure over exposed roots on a forested floodplain: Insights from a controlled laboratory experiment. PLoS ONE 15(2) http://dx.doi.org/10.1371/journal.pone.0229306.
  • Walley Y., Henshaw AJ. and Brasington J. (2020) Topological structures of river networks and their regional-scale controls: A multivariate classification approach. Earth Surface Processes and Landforms 45(12): 2869-2883. http://dx.doi.org/10.1002/esp.4936.
  • Harvey GL., Henshaw AJ., Brasington J. and England J. (2019) Burrowing Invasive Species: An Unquantified Erosion Risk at the Aquatic-Terrestrial Interface. Reviews of Geophysics 57(3): 1018-1036. http://dx.doi.org/10.1029/2018RG000635.
  • Kasprak A., Brasington J., Hafen K., Williams RD. and Wheaton JM. (2019) Modelling braided river morphodynamics using a particle travel length framework. Earth Surface Dynamics 7(1): 247-274. http://dx.doi.org/10.5194/esurf-7-247-2019.