UC creates first lava flow in Christchurch in 6 million years

13 December 2018

For the last 6 million years, Christchurch has been relatively lava free – until now. At the University of Canterbury’s School of Fine Arts, real lava has been pouring out of a new research facility – the Lava Laboratory – which may help researchers monitor lava flows in Hawaii and the rest of the world.

  • LavaLab_NWS_block

    Canterbury scientists wearing Kevlar protective gear create lava at 1350degC in the new Lava Laboratory at the University of Canterbury.

Lava_NWS_block

Lava flow channels in Hawaii 2018 (Photo: USGS)

While Christchurch has had its share of natural disaster hazards it has been relatively lava free, until now. At the University of Canterbury’s School of Fine Arts, real lava has been pouring out of a new research facility – the Lava Laboratory – which may help researchers monitor lava flows in Hawaii and the rest of the world.

A  STEAM-y team of Canterbury and Hawaii volcanologists, engineers, mathematicians and artists has been working together to supersize a bronze casting furnace so it can melt rock to make lava.

According to the UC researchers, the controlled experimental lava flows will be used to develop new ways to monitor and model lava flows. It will be extremely useful for volcanologists to be able to monitor lava flows from above, and then mathematicians and fluid dynamics modellers will be able to calculate what the lava properties are.

USGS scientists helping to monitor eruptions in Hawaii are part of the lava laboratory team and very interested in the results.

“One of the primary missions of the USGS is to protect life and property from natural disasters,” USGS Research Geologist Elise Rumpf says. “This project will help us better understand how lava flows behave, which will improve our ability to predict how they will affect communities all over the world.

“This kind of work could be extremely useful for monitoring lava flows in Hawaii and the rest of the world, and maybe even on other planets. For New Zealand it will help us prepare for future lava flow events that will one day affect Auckland,” she says. 

The Head of UC’s School of Fine Arts Aaron Kreisler says he’s pleased to see Arts combine with STEM in this multi-disciplinary collaboration.

“This represents a significant opportunity for our team to learn from colleagues in other disciplines in meaningful, engaging and really disruptive ways,” he says. “We know that it will lead to amazing collaborative projects and new research from these practitioners in the coming years and we’re excited about this initial step.”

Until now lava research at UC has been limited to using analogue (equivalent) fluids like syrup. Geology Master of Science student Dale Cusack has been pioneering this work, successfully demonstrating you can calculate the syrup properties from above.

“Working with lava analogues introduces its own set of unique challenges,” Mr Cusack says. “However, I am keen to leave behind the golden syrup that is insanely sticky and I’m sure the Geology building caretakers hate me for tramping it all through the building.”

Moving from modelling a cool sticky fluid that behaves in ways Isaac Newton could predict to less predictable hot lava will be challenging but rewarding, according to the researchers.

UC Mechanical Engineering Associate Professor Mathieu Sellier recently won a $917,000 Marsden grant to study the fluid dynamics of lava using the lava laboratory.

“The development of predictive mathematical models and numerical algorithms to solve them will better inform volcanic hazard management strategies,” Dr Sellier says. “The lava lab will be a fantastic opportunity to put the mathematical models to the test and improve their predictive capability.”

UC Volcanologist Associate Professor Ben Kennedy is collaborating with Dr Selliers on his project: Indirect measurement of lava rheology.

“If we can learn about the lava properties from above in the lab, this means a video from a helicopter or a drone made during an actual eruption could be used to predict paths of an ongoing eruption,” Dr Kennedy says.

View the TVNZ news story here.

For further information please contact:

Margaret Agnew, Senior External Relations Advisor, University of Canterbury
Phone: +64 3 369 3631 | Mobile: +64 275 030 168margaret.agnew@canterbury.ac.nz
Tweet UC @UCNZ and follow UC on Facebook

UC Mech Eng metallic implants team

Turning the screw on biodegradable metallic implants

Researchers in the ORTHOMAG group led by A/Professor Mark Staiger and Professor George Dias (UO), working on biodegradable magnesium alloys as ...

Jennifer Crowther

UC researcher develops predictive test for pre-eclampsia

A University of Canterbury biochemist is creating a way to diagnose the life-threatening condition pre-eclampsia with the potential to save the lives ...