University of Canterbury Engineering academic Professor Maan Alkaisi's research into micro-environmental conditions within and between cells may ultimately result in tailored cancer medications.
University of Canterbury Engineering academic and MacDiarmid Institute Principal Investigator, Professor Maan Alkaisi is looking for the mechanism that triggers cancer. His research into micro-environmental conditions within and between cells may ultimately result in tailored cancer medications.
How is it, he asks, that people can carry a cancer-causing mutation from birth, but do not get the disease until much later in life? What nano- or micro-environmental conditions within and between cells might play a role in causing the breach in the carefully controlled ‘code of cell conduct’ that results in runaway cell growth?
In 2018 Professor Alkaisi, of UC's Electrical and Computer Engineering, went to France on a six-month sabbatical to work with international collaborators to try to answer some of these questions.
Essentially, Professor Alkaisi studies the interaction between engineered and living biological matter. He designs nano-scaffolds made of polymers such as polystyrene or the conductive polymer PEDOT:PSS, for the culture of biological cells, and studies the cells’ general physiological response to these substrates and precisely applied nano-forces. Are different proteins expressed as a result of such stimulation? The research requires extremely sensitive structures to measure these tiny, tiny forces and displacements, and benchmark research to compare protein products; equipment not available in New Zealand.
He was impressed with the scope and size of the labs and facilities at Toulouse University.
“I was attached to the ‘Engineering in Life Sciences applications’ group, and hosted at the Laboratory for Analysis and Architecture of System, at CNRS, the French National Center for Scientific Research, by Professor Christophe Vieu. The lab was 1500 square metres, and there were 30 highly trained technical staff who could build what you wanted and knew how to measure whatever the desired metric.”
He noted the advent and widespread use of 3D printers: “There were no 3D printers when I last visited in 2014. Now the lab has six of them to produce different resolutions and scales.”
While in Europe, Professor Alkaisi also visited labs in Denmark and the Netherlands.
“One billion euros have been allocated to Future Emerging Technologies in Europe. About 15% of Europe’s GDP goes on health, and as the ageing population expands, there is pressure to make the health system more targeted. One-size-fits-all medications applied to the whole body results in huge waste. Trillions are spent on cancer drugs which are generally not very effective. The goal is to have genetic and medical history profiles for each person so that the right drug, and the right amount of it, can be administered.”
This is where his research comes in. “People do not all respond to a drug in the same way. Such individual profiles will also provide more accurate prediction of health risk. Invasive procedures may be replaced by simpler, cheaper diagnostic testing.”
Having returned to the University of Canterbury with a refreshed mission and finer focus, Professor Alkaisi has support from two new MacDiarmid Institute-funded PhD students, Christine Franke and Sevgi Onal, who are going to study and measure applied and natural forces in cells.