More than 20 postgraduate science degrees and 50 subjects to choose from

UC has the most field stations of any New Zealand university

Work with top researchers and gain world-class qualifications
Postgraduate science at UC

Contents

Welcome, haere mai 1
Why postgraduate science? 4
Choosing a postgraduate science degree 5
Postgraduate research – discover your world 6
Why UC Science? 8
Research centres and field stations 10
Our degrees – more than 20 postgraduate degrees on offer 13–17
Our people – leading scientists who teach 18
Contact us – make your next move 20

Welcome to UC Science | Nau mai, haere mai ki Te Rāngai Pūtaiao

At UC Science, we take pride in your success. If you want to dive deeper into your field of research, are keen to advance in your career, want to boost your employment potential or are seeking a new challenge – we will help you do it.

It’s all here
At UC Science you’ll find like-minded people, leading researchers to mentor you, state-of-the-art facilities and challenging, rewarding degrees – some of which are the only ones of their kind in Australasia. You’ll get to experience science in the real world – in our labs and on-site research centres and clinics, at our field stations, and in the workplace.

Realise your potential
Most of our postgraduate courses include practical industry placements, internships, projects, lab or field work. Global study experiences are also on offer, including the chance to go on an exchange to a partner university. Expand your mind, open doors and realise your potential with UC Science.
Step up. Stand out.

Postgraduate science is your ticket to amazing places, new opportunities and career success. The journey starts now.
Why postgraduate science?

Postgraduate study can fast-track career advancement, significantly increase your earning potential, widen your opportunities, help you stand out to employers, and increase your knowledge in an area you’re interested in.

In-depth research
Research is a central part of the postgraduate experience. Most postgraduate degrees involve a significant research component. This allows you to dive deep and specialise in your chosen field and conduct original research that contributes to knowledge in that area. UC Science students can specialise in a broad range of research areas at graduate and postgraduate level – see pages 12–13.

Expert supervision
Interaction with academics and teaching staff increases at postgraduate level, and effective supervision is a key part of the learning experience for higher degree candidates. At UC, students are taught and supervised by scientists at the forefront of advances in their field. Teaching and supervision is available in most disciplines up to PhD level.

Build connections
Networking is a crucial part of career development. Postgraduate study gives you wide access to professionals in your chosen field, through internships, work experience, research with expert supervisors, industry placements, clinical experience, and more.

Career advancement
A postgraduate degree is a marketable qualification that can make you even more employable. It is evidence of intellectual ability, persistence, determination and high achievement – all qualities sought-after by employers looking to fill leadership roles.

Employment opportunities
A postgraduate degree can open doors for employment and gain you entry into specific occupations. In fact, many roles and career sectors call for a master’s degree as the minimum requirement for employment.

Better earning potential
The more educated you are, the more you earn. Research shows that study at postgraduate level (master’s and PhD) gives students a salary advantage. See figures below.

Recognition and credibility
An advanced degree makes a difference on a CV. A postgraduate qualification is evidence of high academic achievement and self-discipline. It’s also a mark of your independent research capability and original thinking.

Postgraduate students earn more

<table>
<thead>
<tr>
<th>Degree</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diploma</td>
<td>$62,695</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>$75,618</td>
</tr>
<tr>
<td>Honours</td>
<td>$81,850</td>
</tr>
<tr>
<td>Master’s</td>
<td>$82,559</td>
</tr>
<tr>
<td>Doctorate</td>
<td>$99,279</td>
</tr>
</tbody>
</table>

Of full-time workers in the last New Zealand census, people with a PhD earned 22 percent more (NZD) than those with a master’s or honours degree, while those with a master’s or honours degree earned about nine percent more than bachelor’s degree holders: www.universitiesnz.ac.nz/node/854
Choosing a postgraduate degree

Postgraduate study at UC is flexible, challenging and hugely rewarding. You can study full- or part-time and choose from six-month courses through to a four-year PhD. Have a look at the options below and see if there’s one that suits you.

Graduate diplomas
If you’ve completed a bachelor’s degree, a diploma may be for you. Graduate qualifications allow you to change subject focus, either within your first degree area or in a completely different area. This can increase the value of your undergraduate degree in the job market or be a first step to a new career or further study.

Postgraduate certificates and diplomas
Postgraduate certificates and diplomas are often undertaken by practitioners looking for professional development. The short period of study allows you to gain additional skills and a recognised qualification without a long-term commitment. Postgraduate certificates often include a specialised professional development opportunity. Postgraduate diplomas are longer and more in-depth than the certificate. As well as offering structured courses, many allow you to undertake an independent project or research.

Honours degrees
An honours degree allows you to delve deeper and more rigorously into a subject you are passionate about. It involves a personalised study programme in the subject of your first degree and typically takes one year of full-time coursework, which includes a research component. An honours degree is often a pathway to higher study, such as a master’s degree.

Master’s degrees
UC offers three types of master’s degrees – research master’s, coursework master’s, or a combination of both. A research master’s degree enables you to conduct a significant piece of independent research under expert supervision. A coursework master’s provides a structured programme of taught courses at an advanced level.

Taught postgraduate study
Taught postgraduate study can be a good way to change direction in work or study, as some qualifications do not require any previous study in the subject.

Doctoral studies
A doctoral degree is the highest academic degree offered at UC. Those who earn it must demonstrate significant intellectual achievement, high scholarly ability, and great breadth of knowledge. The UC PhD is a research-only degree (no coursework), which can be completed in over 80 disciplines, carried out under academic supervision and using world-class facilities.

For qualification advice please email
collegeofscience@canterbury.ac.nz
Discover your world

For many, a highlight of postgraduate study is the chance to go deep in an area of science that fascinates and interests them.

Your research comes first

Postgraduate research allows you to explore topics of interest to a much greater depth while also developing your creative scientific research ability. In fact, your own research topic is the most important part of the postgraduate programme at UC. Our students are engaged in a variety of projects across many scientific areas – from the sea to the stars.

Be inspired

Not sure what to study? Looking for inspiration? UC SPARK (system for people and research knowledge) is a searchable website that showcases UC’s research. You can search SPARK for information about individual researchers, the projects they’re working on, the specialist equipment that they use, and more.

Search our database: www.canterbury.ac.nz/spark/

Chasing volcanoes for PhD research

Geology PhD student Rebecca Fitzgerald, of Ngāi Tahu descent, is studying volcanic ballistic missiles (flying volcanic rocks) to help reduce risks to people. She wants to find out what they can tell us about eruptions, their potential hazard to life and how we can manage and mitigate this hazard. Her research has taken her to Japan and Vanuatu – as well as around New Zealand. She’s also mapped craters, and built a giant catapult and pneumatic cannon – all in the name of science!

How much plastic is polluting New Zealand’s beaches?

For his environmental science honours thesis, Phil Clunies-Ross conducted the first investigation of microplastic contamination on New Zealand’s coastlines. Microplastics are small plastic pieces less than five millimetres long. One beach he studied had concentrations comparable to those found overseas, highlighting that even though New Zealand is isolated geographically, it is not free of microplastic pollution. Phil’s research attracted national interest and was published in the New Zealand Journal of Marine and Freshwater Research.
Can micronutrients improve mental health symptoms?

Postgraduate study has exposed Hayley Bradley to cutting-edge research that could change lives. The psychology PhD student is working with UC’s Mental Health and Nutrition Research Group on a world-leading clinical trial to find out if micronutrients (vitamins and minerals) can improve symptoms of depression and anxiety in pregnant women. New Zealand has some of the highest rates of antenatal depression and anxiety in the developed world, and the illnesses are the leading cause of maternal morbidity worldwide.

Postgraduate success a team effort

Master’s student Joel Shuurman is embracing the opportunity to drive his own learning. Joel is studying towards a Master of Science in Chemistry. For his master’s he’s investigating new applications for metal oxide materials by reacting the surface with different molecules, to help tune physical and chemical properties. A huge incentive for him to stay on for postgraduate study was the support he received from his department, supervisors and fellow students. “I love how the department and my group treat me like a scientist. It only gets better the longer you stay.”

Taking on toxic algae

PhD candidate Tara McAllister, of Te Aitanga-a-Māhaki descent, is passionate about protecting water for future generations. Her PhD research investigates the toxic algae Phormidium, which threaten waterways and wildlife both in New Zealand and overseas. Tara’s latest experiments have involved creating “fake” rivers, controlling water speed and measuring nutrients to determine how the algae respond and why they might be thriving. “This is such a big problem plaguing our rivers and I’m determined to advance our current understanding so that we can eventually figure out how to deal with it.”
Why UC Science?

At UC Science you decide where you’re going – our job is to help you get there. We offer heaps of options and flexibility, state-of-the-art facilities, amazing research opportunities (in the lab and the field) and passionate, world-recognised lecturers.

Applied learning
You’ll have more hands-on practical and clinical learning experiences – in lectures, in the labs, at our field stations and on work experience. You’ll get to work on real-world problems such as climate change, food security, environmental protection and developing new, smarter technologies.

Interdisciplinary approach
At UC you can explore a wide range of subjects – from astronomy to Antarctic studies, from physics to psychology. Our interdisciplinary approach to science creates more potential pathways and enables you to delve deeper or broaden your studies, depending on your research or career goals.

Compact city and campus
Christchurch is an accessible city with many businesses and research locations close to the university. Our campus is set on over 87 hectares, with world-class libraries and equipment, and over 15 recognised science research centres, institutes and hubs.

Purpose-built
Our world-renowned facilities and resources enable you to learn and research at the cutting edge. We’ve got the most field stations of any New Zealand university and have just opened a new $216 million hi-tech science hub.

Learn from the best
UC is the most research-intensive university in New Zealand. You’ll work with and learn from passionate people who are leading the way with their research and regularly receive national and international recognition for their work.

Living laboratory
Christchurch and Canterbury are a living laboratory where you can see and study science in action – from the mountains, to the sea and beyond the stars. Whether you’re in native bush, a glacial lake, or the International Dark Sky Reserve – this is your Canterbury classroom.

Visiting experts
Specialists from all over the world come to UC to teach and collaborate, providing unparalleled access to expertise. UC’s renowned Erskine Fellowship programme enables 75 international experts to teach and conduct seminars here every year.

Globally connected
UC is the only New Zealand university to be a member of the AC21 Academic Consortium: 19 of the world’s leading research universities. UC maintains partnership agreements with many distinguished universities around the world, giving students the chance to study overseas.

Advice and academic support
We offer a range of support services to help you succeed. For advice about degree planning, subject choices, selecting a supervisor and more, go to: www.canterbury.ac.nz/science/student-advice-and-forms/postgraduate-advice-and-forms/ or email our postgraduate advisor: science@canterbury.ac.nz

Scholarships
Scholarships are an excellent way of funding postgraduate study. UC offers a wide range of scholarships catering for all levels of study up to doctoral level.
Find out about our scholarships and how to apply: www.canterbury.ac.nz/future-students/fees-and-funding/scholarships-at-uc/
“Thanks to my postgraduate studies, I’ve been able to pursue my interests and have a successful career.”

– Dr Gareth Taylor
Postgraduate Diploma and PhD in Environmental Science
Senior executive at Jacobs
Research centres and institutes

UC Science is home to many world-leading research centres and institutes. They attract high-calibre academics and offer exciting research and work opportunities for postgraduate students.

Biomolecular Interaction Centre
A multidisciplinary research centre dedicated to the study of molecular interactions critical to a range of fundamental sciences, new treatments for disease, and highly functional products.

Rutherford Regional Science and Innovation Centre
A new $216 million hi-tech facility. Home to state-of-the-art learning and research spaces.

Gateway Antarctica
A focal point for Antarctic study. It attracts national and international participation and plays a leading role in global Antarctic research projects.

Geospatial Research Institute Toi Hangarau
A focus for geospatial research in New Zealand. It delivers world-class geospatial science and brings together iwi, business, government and researchers to serve New Zealand’s geospatial needs.

Waterways Centre for Freshwater Management
A joint partnership between Canterbury and Lincoln Universities. It aims to improve skills, knowledge and awareness in the water sector.

Rose Centre for Stroke Recovery Research
A state-of-the-art facility to extend stroke research and clinical expertise. It provides clinical services and new rehabilitation techniques through research.

Field stations

Our extensive network of field and research stations gives you the chance to test out your knowledge and extend your research in a wide range of terrains, ecosystems and even into galaxies.

Cass Mountain Research Area
The Cass Mountain Research Area is located in the central South Island. It enables access to montane grasslands, scrub, riverbeds, scree, beech forests, swamps, lakes, streams and alpine habitats.

Westport Field Station
Westport Field Station is in the Westport township, nestled between the Southern Alps and the Tasman Sea. It offers access to a rich geological and ecological learning ground.

Harihari Field Station
Harihari Field Station is located 20 minutes north of the Franz Josef and Fox Glaciers in an area where podocarp forests and mountain lakes are readily accessible.

Mount John Observatory
UC’s world-renowned observatory near Lake Tekapo houses four principal telescopes and detectors for astronomy studies. It provides outstanding conditions for observations and discoveries of the southern sky.

Scott Base, Antarctica
UC’s research in Antarctica is undertaken from Scott Base, New Zealand’s station on Ross Island, and at a field campsite on the Ross Ice Shelf.

Nigeria Field Station
UC’s most remote field station is found at the edge of Nigeria’s amazingly diverse and ecologically important Ngel Nyaki Forest Reserve.

See all of our research centres: www.research.canterbury.ac.nz/rescentres.shtml
Check out our field stations: www.ffc.canterbury.ac.nz/
“I want to do research that excites me and makes a significant contribution to the scientific and general community.”

– Roseanna Gamlen-Greene
Bachelor of Science with Honours in Ecology
Studying towards a PhD in Ecology

A geography field trip to Franz Josef Glacier, West Coast.
Our postgraduate science degrees

Finding the degree to match your interests and ambitions is easy with UC. We offer a wide range of postgraduate science qualifications to support your research interests, professional development and advancement. Explore some of our degree options here, or for a full list see our website.

New to UC in 2018

Our newest science degrees prepare you for environmental, industry and societal changes:

Master of Spatial Analysis for Public Health

This master’s degree provides students with the skills, knowledge and competencies to undertake spatial analysis roles within a wide range of health organisations. It provides a solid foundation for career development and moving into senior spatial analysis roles within New Zealand and internationally.

Master of Bicultural Co-Governance of Natural Resources

This unique degree provides you with the skills and knowledge to understand and overcome some of the key challenges facing governing bodies. You’ll learn how to engage with and lead co-governance fora, build governance relationships, and develop holistic solutions to issues posed by indigenous and non-indigenous governance bodies.

Geospatial science and technology – three new degrees

We’ve created three new qualifications in response to the current geospatial skills shortage in New Zealand and overseas – a Master, Postgraduate Diploma and Postgraduate Certificate in Geospatial Science and Technology.

These qualifications are designed to equip current and future geospatial professionals with the advanced skills required for geospatial leadership roles in government, industry and research. They include the chance to use disruptive technology to create real-world solutions for health, remote workforces, urban planning and earthquake recovery. The degrees can be studied full- or part-time and are ideal for practitioners looking for professional development or more advanced study.

Enter from any degree

Here are a few degrees you can do that don’t require any science background:

Postgraduate Certificate in Antarctic Studies

This degree attracts graduate students from a diverse range of disciplines and draws on the expertise of over 30 academic staff and guest speakers. Students examine major scientific and environmental themes as well as contemporary issues facing Antarctica. It includes a research trip to Antarctica.

Postgraduate Diploma in Applied Data Science

Data science is a new profession emerging along with the exponential growth in size and availability of “big data”. Data scientists look at past and current data to provide insight into future trends. This degree is designed to build data science capabilities in people from a range of backgrounds.

Graduate Diploma in Science

This diploma offers people who hold a bachelor’s degree in a major in an unrelated area the opportunity to study science in depth. It is designed to provide a qualification for graduates seeking to qualify for entry to postgraduate qualifications in science, change career direction, or to extend or upgrade their existing qualifications. This qualification can be studied full- or part-time and is an ideal pathway into postgraduate study.
Professional development

Our professional development degrees can help you upskill and get ahead in your career:

Professional Master of Engineering Geology
Engineering geology is a multidisciplinary area applying geological sciences to engineering work, identifying and mitigating geological hazards and aspects of land-use planning. This strongly applied degree concentrates on professional training for practitioners, with students completing a practice-focused project. It is the only degree of its kind in Australasia.

Master of Geographic Information Science
This is the only degree of its kind in New Zealand. It provides an interdisciplinary approach to Geographic Information Science, including taught courses and supervised research. Graduates will have advanced knowledge in the field and be qualified to work as GIS professionals in research, government and industry.

Postgraduate Diploma in Clinical Psychology
This professional qualification in clinical psychology has a strong practical component, which facilitates a greater understanding of real people and their experiences. The degree consists of two years' coursework and at least one year of practical work experience. Entry is limited to 10 to 12 people each year.

Master of Financial Engineering
Financial engineering combines financial and economic theory with mathematical and computational tools to design and develop financial products, portfolios, markets, and regulations. This degree links real-world problems in financial engineering to an underlying theoretical framework. Graduates gain industry-level skills and are capable of high-level performance in the financial industry.

In-depth research

Dig deeper into an area you’re interested in with our research-focused degrees:

Master of Science
The Master of Science usually consists of two parts: coursework and a thesis. Students can investigate areas of interest to them and conduct independent and original research. Over 30 subjects are available, and some can only be studied at postgraduate level. Also available: GradDipSc, MSc (Hons), PGDipSc.

Master of Water Resource Management
This master's degree prepares you for a professional career in water resource management. It is jointly taught by UC and Lincoln University and delivered with support from the Waterways Centre for Freshwater Management. Programme content includes advanced water resources, water management, policy and planning, coursework and thesis.

Master of Antarctic Studies
This one-year degree gives students a 360-degree view of Antarctic issues. It combines fieldwork in Antarctica over summer, additional coursework and an Antarctic-related research dissertation. The degree starts with summer courses that are coordinated by Gateway Antarctica – an internationally recognised research centre based at UC.

Doctor of Philosophy
A Doctor of Philosophy is an opportunity to conduct extensive, sustained and original research and study in your chosen subject. The degree is carried out under expert supervision and typically takes three to four years to complete. PhD scholarships are available to students with excellent First Class Honours degrees.

How to enrol: www.canterbury.ac.nz/enrol
Unique to UC

Thanks to our specialist expertise, we’re able to offer some qualifications only found at UC:

Professional Master of Geospatial Science and Technology

This professional master’s degree will equip current and future geospatial professionals with the advanced skills required for geospatial leadership roles in government, industry and research. It can be studied full- or part-time and is ideal for people already working in the geospatial field looking to upskill.

Master of Science in Medical Physics

Medical physics applies the concepts and methods of physics to the diagnosis and therapy of human disease. Medical physicists are in high demand and have excellent job prospects. UC offers New Zealand’s only accredited medical physics education programme. Also available as: BSc (Hons), PGDipSc, PhD.

Master of Audiology

This is an internationally accredited qualification focused on training professional audiologists. It develops clinical knowledge and skills across the scope of practice for audiologists and includes a strong foundation in acoustics, psychoacoustics, and neuroscience. It is endorsed by the New Zealand Audiological Society.

Master of Speech and Language Pathology

This is a full-time two-year professional qualification. Students graduate as trained speech-language therapists. It is a hands-on qualification that includes clinical experience working with clients of all ages with communication disabilities. Study areas include swallowing, fluency and voice, clinical linguistics and speech and language development and disorders.

Meeting industry demand

Be ready for work with these job-focused degrees created to meet industry demand:

Master of Disaster, Risk and Resilience

The master’s degree is designed to meet global demand for disaster specialists and develops skills in risk communication, disaster reduction and resilience strategies. Graduates gain knowledge and skills to help communities and organisations become stronger, more resilient and able to recover in the face of adversity.

Postgraduate Certificate in Geospatial Science and Technology

This degree equips current and future geospatial professionals with the advanced skills required for geospatial leadership roles in government, industry and research. Solve real-world problems and use new technologies to develop solutions for health, road safety, remote workforces, urban planning and earthquake recovery.

Master of Urban Resilience and Renewal

This master’s degree prepares you for a career in the emerging and rapidly developing field of urban resilience and renewal. You’ll engage with community groups and local government, and learn how to help communities and governments address the challenges facing their cities – now and in the future.

Master of Applied Data Science

Data science is an essential skill set in a world where everything from education to commerce, communication to transport, involves large-scale data collection and digitalisation. This degree focuses on the broader skills required of data scientists, such as advanced analytical capability, problem solving, teamwork and critical thinking. It includes an industry data science project.

Full list of degrees ➤
<table>
<thead>
<tr>
<th>Qualification</th>
<th>Description</th>
<th>Requires</th>
<th>Start date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science with Honours (BSc (Hons))</td>
<td>The BSc (Hons) degree comprises one full-time year of coursework that includes a research component. See the subject options on pages 12-13.</td>
<td>BSc with a high level of attainment in appropriate subjects.</td>
<td>February and July</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Graduate Diploma in Science (GradDipSc)</td>
<td>This diploma offers existing degree-holders the chance to study science in-depth. Ideal for graduates seeking to extend their existing degree or qualify for other postgraduate science degrees.</td>
<td>Any bachelor's degree. Acceptance will depend on the standard and relevance of previous studies.</td>
<td>February and July</td>
<td>1 year full-time; 2+ years part-time.</td>
</tr>
<tr>
<td>Postgraduate Certificate in Antarctic Studies (PGCertAntaStud)</td>
<td>Examines major scientific and environmental themes as well as contemporary issues facing Antarctica. Includes fieldwork in Antarctica.</td>
<td>Any bachelor's degree.</td>
<td>February</td>
<td>14 weeks full-time.</td>
</tr>
<tr>
<td>Postgraduate Certificate in Geospatial Science and Technology* (PgCertGST)</td>
<td>Equips geospatial professionals with the advanced skills required for geospatial leadership roles.</td>
<td>Undergraduate degree (minimum B average), or recognised professional discipline-specific experience.</td>
<td>February</td>
<td>8 months full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Postgraduate Diploma in Applied Data Science (PGDipADS)</td>
<td>Ideal for students wanting to enhance or build their data science capabilities, and combine these with skills and knowledge they bring from previous studies.</td>
<td>B+ average in relevant 300-level undergraduate courses.</td>
<td>February</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Postgraduate Diploma in Clinical Psychology (PGDipClinPsyc)</td>
<td>Professional qualification in Clinical Psychology. Selection for the course is competitive: a maximum of 12 people are selected each year.</td>
<td>MA, MSc or PhD in Psychology or BA(Hons) or BSc(Hons) in Psychology and be enrolled in a PhD.</td>
<td>February</td>
<td>2 years of coursework and at least 1 year of practical work experience.</td>
</tr>
<tr>
<td>Postgraduate Diploma in Geographic Information Science (PGDipGIS)</td>
<td>Graduates will have advanced knowledge in GIS, with ability to plan, execute and present findings of applied GIS projects. They will be qualified to work as GIS professionals.</td>
<td>Relevant bachelor's degree. Applications close on 1 February.</td>
<td>February</td>
<td>1–2 years full-time; up to 4 years part-time.</td>
</tr>
<tr>
<td>Postgraduate Diploma in Geospatial Science and Technology* (PGDipGST)</td>
<td>Equips geospatial professionals with the advanced skills required for geospatial leadership roles. Aimed at practitioners looking for professional development and/or considering more advanced study.</td>
<td>Undergraduate degree (minimum B average), or recognised professional discipline-specific experience.</td>
<td>February</td>
<td>8 months full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Postgraduate Diploma in Science (PGDipSc)</td>
<td>This degree offers the opportunity to undertake more advanced and in-depth study in a science subject. Over 20 subjects to choose from — see pages 12-13 for full subject list.</td>
<td>BSc or other bachelor's degree and approved undergraduate science courses.</td>
<td>February and July</td>
<td>1 year.</td>
</tr>
<tr>
<td>Postgraduate Diploma in Water Resource Management (PGDipWaterRM)</td>
<td>Prepares graduates for a professional career in water resource management and development of innovative and effective methods for sustainable management of this critical resource.</td>
<td>Relevant bachelor's degree.</td>
<td>February and July</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Master of Antarctic Studies (MASt)</td>
<td>Combines fieldwork in Antarctica over summer, additional coursework and an Antarctic-related research dissertation. Students gain a 360-degree view of Antarctic issues.</td>
<td>PGCertAntaStud or evidence of ability to complete advanced level academic study (normally a B average in 400-level, or equivalent, courses).</td>
<td>November</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Master of Applied Data Science (MADS)</td>
<td>Designed for students who wish to build their data science capabilities and combine these with skills and knowledge acquired from previous studies.</td>
<td>A university undergraduate degree, B average in relevant undergraduate 300-level courses.</td>
<td>February and July</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Master of Audiology (MAud)</td>
<td>Includes coursework, and clinical and research experiences. Coursework focuses on training professional clinical audiologists.</td>
<td>BSLP(Hons), BA, BSc; other bachelor's degrees also considered.</td>
<td>February</td>
<td>2 years full-time; up to 4 years part-time.</td>
</tr>
<tr>
<td>Qualification</td>
<td>Description</td>
<td>Requires</td>
<td>Start date</td>
<td>Duration</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Master of Bicultural Co-Governance of Natural Resources* (MBCN)</td>
<td>Equips students with skills and knowledge to lead co-governance fora, build governance relationships and develop holistic solutions to issues posed by indigenous and non-indigenous governance bodies.</td>
<td>Undergraduate degree (minimum of a B average), or recognised professional discipline-specific experience.</td>
<td>February</td>
<td>12 months full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Master of Disaster, Risk and Resilience (MDRR)</td>
<td>Prepares students for a career in disaster risk management. Covers disaster causes, risk communication and risk reduction strategies, and resilience-building methodologies.</td>
<td>A relevant university degree, normally with a B+ average or higher in the final year.</td>
<td>February</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Master of Financial Engineering (MFEng)</td>
<td>Prepares students for a career as a quantitative analyst in the global finance industry. Focuses on developing and designing financial products, markets and investment strategies, and developing regulatory frameworks.</td>
<td>Any bachelor's degree normally with a B+ average (including some Statistics, Mathematics and Finance courses or completion of a qualifying course).</td>
<td>February</td>
<td>2 years full-time; up to 4 years part-time; Part II (thesis only): 1–2 years full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Master of Geographic Information Science (MGIS)</td>
<td>The MGIS is the only degree of its kind in New Zealand. It provides an interdisciplinary approach to GIS, including taught courses and the ability to carry out research and an applied project.</td>
<td>PGDipGIS or equivalent or relevant bachelor's degree and have completed two undergraduate courses in GIS or have relevant work experience.</td>
<td>February</td>
<td>2 years full-time; up to 4 years part-time; Part II (thesis only): 1–2 years full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Master of Science (MSc)</td>
<td>The MSc usually consists of coursework and a thesis, allowing students to conduct independent and original research. Over 30 subjects to choose from, and some can only be studied at postgraduate level.</td>
<td>BSc, BSc(Hons), PGDipSc, PGDipEngGeoL, or any bachelor's degree and a qualifying programme. Child and Family Psychology has other criteria.</td>
<td>February</td>
<td>2 years full-time; up to 4 years part-time; Part II (thesis only): 1–2 years full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Master of Spatial Analysis for Public Health* (MSAPH)</td>
<td>The MSAPH provides students with skills and knowledge to undertake spatial analysis roles within a wide range of health organisations.</td>
<td>Some basic prior experience/training in statistics, programming (eg R or Python) and GIS.</td>
<td>February</td>
<td>12 months full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Master of Speech and Language Pathology (MSLP)</td>
<td>A hands-on degree programme including clinical practice experience.</td>
<td>Any bachelor's or master's degree.</td>
<td>February</td>
<td>2 years full-time; up to 4 years part-time.</td>
</tr>
<tr>
<td>Master of Urban Resilience and Renewal (MURR)</td>
<td>The MURR focuses on how communities respond to challenges facing today's cities. Ideal for students with a science or social science background wishing to address broader urban issues and engage with communities.</td>
<td>Relevant bachelor's degree eg Geography, Environmental Science, Sociology (normally a B grade average required at 300-level).</td>
<td>February</td>
<td>1 year full-time; 2 years part-time.</td>
</tr>
<tr>
<td>Master of Water Resource Management (MWaterRM)</td>
<td>This degree helps graduates develop innovative and effective methods for sustainable management of water resources.</td>
<td>PGDipWaterRM or relevant bachelor's degree.</td>
<td>February</td>
<td>2 years full-time; up to 4 years part-time; Part II (thesis only): 1 year full-time or 2 years part-time.</td>
</tr>
<tr>
<td>Professional Master of Engineering Geology (PMEG)</td>
<td>Engineering geology is a multidisciplinary area applying geological sciences to engineering work. This is a strongly applied degree focusing on professional training for practitioners.</td>
<td>BSc in Geology or Earth Sciences or BE(Hons) in Civil Engineering.</td>
<td>February</td>
<td>1 year.</td>
</tr>
<tr>
<td>Professional Master of Geospatial Science and Technology* (PMGST)</td>
<td>Equips geospatial professionals with the advanced skills required for geospatial leadership roles. Includes an independent project and/or industry placement.</td>
<td>Undergraduate degree (minimum B average), or at least 3 years of professional experience in GIS.</td>
<td>February</td>
<td>12 months full-time; 2–4 years part-time.</td>
</tr>
<tr>
<td>Doctor of Philosophy (PhD)</td>
<td>The PhD comprises advanced research carried out under supervision and presented in a thesis.</td>
<td>Bachelor's degree or master's degree with first- or second-class division 1 honours or equivalent.</td>
<td>Anytime start**</td>
<td>2–4 years full-time; 3–7 years part-time.</td>
</tr>
</tbody>
</table>

* Subject to Universities New Zealand CUAP approval, due December 2017
** Doctoral studies and master's study by thesis-only can be started at the beginning of any month.
* Some subjects allow a July start, please contact the Department for clarification.
A community of minds

At UC we don’t just teach science – we do science. In fact, UC has the highest proportion of academics conducting both teaching and research of any New Zealand university.

Leading scientists who teach

Our programmes are research led. As a postgraduate student you’ll be taught and supervised by academics at the forefront of advances in their field of study, who are making significant contributions to knowledge. As teachers, they make learning interesting; many receive international and national awards for the quality of their teaching. They will challenge, inspire and nurture you as you pursue your own research journey.

Sharing knowledge and ideas

At UC, we won’t just support you in your research pursuits – we’ll also invite you to join us in ours. You could work on any number of world-leading research projects, from developing new drugs to treat disease to designing next-generation nanochips and discovering new plant species or planets. We look forward to working with you!

Scientist leads the way in Antarctic research

Marine scientist Dr Regina Eisart of Gateway Antarctica is an expert in the physiology and nutritional ecology of Antarctic marine mammals. She leads a research programme on top predators of the Antarctic and studies the biological and political factors that shape big-picture marine conservation in Antarctica. She is the first New Zealand scientist to earn a prestigious Pew Charitable Trusts Marine Conservation Fellowship and is also supported by the United Nations Environment Programme.

A new paradigm for disease treatment

UC researchers are working on a revolutionary drug-targeting system that could one day be used to treat a range of fatal, inherited diseases caused by genetic enzyme deficiencies. They’re focusing on around 60 or 70 incurable diseases called the lysosomal storage disorders, of which there are around 200 sufferers in New Zealand. The system could deliver recombinant enzymes and other drugs to a specific organelle (a structure in a cell that performs a specialised function) within human cells, where they are needed.
Understanding prejudice and intergroup conflict

Dr Kumar Yogeeswaran is a social psychologist specialising in the areas of diversity, social identity, stereotyping and prejudice. He is fascinated by intergroup relations and how people’s membership in social groups influences their thoughts, feelings, and behaviours toward others; as well as their self-conceptions. Dr Yogeeswaran’s research is consistently published in leading international journals and directly applies to understanding many contemporary social and political issues.

Award-winning teacher has the “x-factor”

Geology lecturer Ben Kennedy wants to start a revolution – against traditional, passive teaching lectures. The associate professor is already leading by example through his own teaching, which includes integrating real-world volcanology research into his lectures and lab sessions. His efforts earned him the Sustained Excellence award at the 2017 New Zealand Tertiary Teaching Excellence awards. The award recognises teachers who demonstrate the “x-factor”, create inspirational learning experiences and ignite inquiry and engagement in their students.

Planet hunters

A team of UC astronomers have eyes on the universe – 24/7 (weather permitting!). With the help of international researchers and three identical telescopes in Chile, Australia and South Africa, the team is helping answer some of the great unknowns about the planets in our galaxy. For example, how many planets are there around different stars? Do all stars have planets? What type of planets are they? Where are they found in relation to their parent stars? The research project uses microlensing to detect planets orbiting stars near the centre of the galaxy – thousands of light years away.
Make your next move

Create your own personal myUC account via our website to help us find out more about your interests and area of study. Share your myUC account details with the science department hosting the programme you’re interested in. We can take it from there.

Find out more about our degree options, study opportunities, how to enrol, and more. Contact us today!

Phone: +64 3 369 4141
Email: collegeofscience@canterbury.ac.nz
Web: www.science.canterbury.ac.nz

Be inspired. Meet our postgraduate students and hear their career stories: www.canterbury.ac.nz/profiles
“Regardless of your circumstances – persistence, hard work and confidence can get you where you want to go.”

– Mahali Matehe
Ngāi Tahu, Ngāti Porou
Studying towards a Master of Science in Medical Physics
Pūtaiao. Te pū o te ao.