Seminar Series

Hydrodynamic coupling of arrays in fluids


Arun Manickavasagam


Department of Mechanical Engineering, University of Canterbury

Time & Place

Fri, 26 Apr 2019 14:00:00 NZST in E14 (Lecture Theatre), Engineering CORE


Broadband, multi-functional and parallel-processing devices are often built on coupled oscillators or an array of resonators. Different length scales and applications determine the dominating coupling mechanism of the device. In this work we investigate the effects of fluid-coupling between members of a one-dimensional array in an unbounded and a bounded fluid domain. Our analysis is based on the Navier-Stokes equation for incompressible flow which is solved using a boundary integral technique resulting in the hydrodynamic coupling matrix through which added mass and hydrodynamic dissipation effects are inferred. We also investigate the influence of non-neighbouring members in view of trying to distinguish between local and global (array) effects. Results clearly suggest that the fluid-coupling is mutually dependent on both gaps between the beams and their respective heights from the surface. Also, non-neighbouring members play a significant role as the size of the array increases and at gaps less than half the width of the cantilever.

Mech Eng seminar, Arun Manickavasagam