
I use machine learning in two specific fields of research: neuroengineering and adaptive optics. Our CDA website details other areas of our research.
Qualifications & Memberships
Research Interests
Research interests include:
-Embedded Systems - Control
-Digital Signal Processing - Imaging and Control, Applications
-Machine learning for prediction and classification
-Heterogeneous computer systems architecture
-Systolic computer architectures
-Digital signal and digital image processing
Recent Publications
- Engler B., Le Louarn M., Verinaud C., Weddell S. and Clare R. (2022) A flip-flop modulation method used with a pyramid wavefront sensor to correct piston segmentation on ELTs. Journal of Astronomical Telescopes, Instruments, and Systems JATIS21114SSR http://dx.doi.org/10.1117/1.JATIS.8.2.021502.
- Taghinia P., Clare R., Weddell S. and Yang L. (2022) Direct model-based wavefront sensorless method with a fixed number of measurements. Optics Continuum 1(12): 2460-2460. http://dx.doi.org/10.1364/optcon.470914.
- Ayyagari S., Jones R. and Weddell S. (2021) Detection of microsleep states from the EEG: A comparison of feature reduction methods. Medical and Biological Engineering and Computing 59 MBEC-D-20-00240R2: 1643-1657. http://dx.doi.org/10.1007/s11517-021-02386-y.
- Buriro AB., Ahmed B., Baloch G., Ahmed J., Shoorangiz R., Weddell S. and Jones R. (2021) Classification of alcoholic EEG signals using wavelet scattering transform-based features. Computers in Biology and Medicine 139 104969 http://dx.doi.org/10.1016/j.compbiomed.2021.104969.
- Buriro AB., Ahmed B., Baloch G., Ahmed J., Shoorangiz R., Weddell SJ. and Jones RD. (2021) Classification of alcoholic EEG signals using wavelet scattering transform-based features. Computers in Biology and Medicine 139 http://dx.doi.org/10.1016/j.compbiomed.2021.104969.
Refer to our CDA website for details about our group: https://researchprofile.canterbury.ac.nz/Group.aspx?groupid=45