PHYS311-18S1 (C) Semester One 2018

Quantum Mechanics

15 points

Details:
Start Date: Monday, 19 February 2018
End Date: Sunday, 24 June 2018
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Friday, 2 March 2018
  • Without academic penalty (including no fee refund): Friday, 18 May 2018

Description

Development of quantum mechanics from basic postulates, using operator techniques, with application of the formalism to a variety of systems; time-independent perturbation theory.

Learning Outcomes

  • The objectives of the course are to understand:
  • The way in which systems are represented in quantum mechanics by wavefunctions and physical observables are represented by operators
  • How to determine the possible values that can be obtained from the measurement of observables and, given the wavefunction for a state, the probability of obtaining a given value
  • How the time-dependent Schrödinger’s equation can be used to obtain dynamical information about quantum states and the time-independent equation can be used to determine the allowed energy states given the potential.
  • How to apply perturbation theory to obtain approximate solutions to Schrodinger’s equation for situations when an exact solution isn’t possible
  • How the algebra of angular momentum determines the allowed values for the magnitude and one component of the angular momentum and how this can be applied to orbital and spin angular momentum as well as the total angular momentum of a system
  • How to use series solutions to solve various differential equations which arise in quantum mechanics
    • University Graduate Attributes

      This course will provide students with an opportunity to develop the Graduate Attributes specified below:

      Critically competent in a core academic discipline of their award

      Students know and can critically evaluate and, where applicable, apply this knowledge to topics/issues within their majoring subject.

Prerequisites

(1) PHYS203 or (PHYS206 and CHEM251); (2) MATH103 or EMTH119. RP: MATH201 and MATH203

Recommended Preparation

Course Coordinator / Lecturer

Jenni Adams

Assessment

Assessment Due Date Percentage  Description
Exam 60%
Homework Assignments 25% 5 @ 5% - Homework Assignments (5 @ 5%). The homework assignments will be distributed fortnightly and will due approximately two weeks later.
Mid Semester Test 15%


Note: Homework Assignments (5 @ 5%) It is allowed, even encouraged, for you to work together on your assignments. However you must understand the material you hand in. There will be “spot” oral quizzes to test your understanding of what you have submitted in your assignment. You will be given zero for any question you cannot explain properly.

The 15% Mid-semester Test is scheduled for 1:00pm on 30th April 2018

Textbooks / Resources

Required Texts

Griffiths, David J; Introduction to Quantum Mechanics ; 2nd ed; Pearson Prentice Hall, 2005.

J. J. Sakurai; Modern Quantum Mechanics ; Addison-Wesley.

Recommended Reading

Arno Bohm; Quantum Mechanics: Foundations & Applications ; Springer-Verlag, 1986.

J. S. Bell; Speakable and Unspeakable in Quantum Mechanics ; Cambridge University Press.

P. A. M. Dirac; The Principles of Quantum Mechanics ; 4th; Clarendon Press, Oxford, 1958.

Course links

Course and content

Additional Course Outline Information

Academic integrity

Please consult the document General Information for Physics and Astronomy Students on the Physics and Astronomy Web Page:
http://www.phys.canterbury.ac.nz/courses/index.shtml

Indicative Fees

Domestic fee $865.00

International fee $3,788.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see School of Physical & Chemical Sciences .

All PHYS311 Occurrences

  • PHYS311-18S1 (C) Semester One 2018