ENEL290-17S2 (C) Semester Two 2017

Waves and Materials in Electrical Engineering

15 points

Details:
Start Date: Monday, 17 July 2017
End Date: Sunday, 19 November 2017
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Friday, 28 July 2017
  • Without academic penalty (including no fee refund): Friday, 13 October 2017

Description

Waves in electrical engineering. Static electric and magnetic fields. Transmission lines: equivalent circuit, wave propagation, reflections and matching. Plane waves, antenna basics and electromagnetic interference. Electrical engineering materials: conductors, insulators and semiconductors.

The curriculum for this course includes:

1. Electrostatics and Magnetostatics: Electric and Magnetic Fields; Gauss’ Law, Coulomb’s Law, Ampere’s Law; Capacitance and inductance; Coaxial cables.

2. Transmission Lines: Wave equations; Characteristic impedance; Reflections and impedance matching; Lossy and lossless transmission lines; Standing waves and Voltage Standing Wave Ratio; Smith Charts; Examples: coaxial cables, microstrip lines.

3. Plane Waves and Time Varying Fields: Maxwell’s Equations in free space and source-free media; Conduction Current; Charge Dissipation; Wave equation and plane-wave solutions; Complex permittivity; Intrinsic impedance; Skin depth.

4. Physical & Electronic Structure of Materials: Isolated atoms; Atomic bonding; Crystallography; Crystalline defects; Thermal expansion

5. Conductors: Conduction mechanisms; Temperature dependence; Skin effect; Thin metal films; Interconnects; Thermal conductivity; Thermal noise

6. Dielectrics/Insulators: Polarisation; Relative permittivity; Dielectric strength; Insulator breakdown; Capacitor dielectric materials

7. Semiconductors: Intrinsic semiconductors; Extrinsic semiconductors; Temperature dependence; Recombination; Majority & minority carriers; Optical absorption; Basic diode operation principles; Basic transistor operation principles

Learning Outcomes

  • At the end of this course, students will be able to:
  • Analyze static electric and magnetic field distributions for important electrical engineering situations (coaxial cables, transmission lines etc.)
  • Relate these to equivalent circuit parameters (resistance, capacitance, inductance).
  • Develop understanding of wave propagation and reflections on coaxial cables and other transmission lines.
  • Design simple matching networks.  
  • Understand the propagation of electromagnetic plane waves.  
  • Understand the electrical properties of materials, including: conduction mechanisms, dielectric properties and breakdown phenomena, basic crystallography, bonding and band structure in conductors, insulators and semiconductors; doping, impurities, electrons and holes in semiconductors; basic diode operation principles.

Prerequisites

PHYS102, MATH103 or EMTH119; or Approval of the Dean of Engineering and Forestry.

Course Coordinator

Richard Clare

Lecturer

Maan Alkaisi

Assessment

Assessment Due Date Percentage 
Final Exam 60%
Homework 10%
Lab Assignments 15%
Test 15%

Textbooks / Resources

Recommended Reading

Kasap, S. O; Principles of electronic materials and devices ; 3rd ed; McGraw-Hill, 2006.

Ulaby, Fawwaz T.1943- , Ravaioli, Umberto; Fundamentals of applied electromagnetics ; Seventh edition, Global edition;

Indicative Fees

Domestic fee $919.00

International fee $5,000.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Electrical and Computer Engineering .

All ENEL290 Occurrences

  • ENEL290-17S2 (C) Semester Two 2017