PHYS206-20S2 (C) Semester Two 2020

Electromagnetism and Materials

15 points

Details:
Start Date: Monday, 13 July 2020
End Date: Sunday, 8 November 2020
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Friday, 24 July 2020
  • Without academic penalty (including no fee refund): Friday, 25 September 2020

Description

The treatment of electromagnetic forces and potentials in vector form. Development of the fundamental laws of electromagnetism through to the Maxwell equations in integral form. Practical application of electromagnetic theory to various physical situations. Introduction to modern materials starting with their different classifications, their physical structure and their basic electronic properties. Later sections will include discussion of nanomaterials and semiconductors. Frequent reference will be made to the technological relevance of the material as well as the basic physics at its foundation.

Introduction to modern materials starting with their different classifications, their physical structure and their basic electronic properties.  Later sections will include discussion of nanomaterials and semiconductors.  Frequent reference will be made to the technological relevance of the material as well as the basic physics at its foundation.

Learning Outcomes

  • As a student in this course, I will develop the ability to:
  • Understand and describe the basic concepts of electric forces, fields and potentials (exam assessment).
  • Calculate forces, fields and potentials caused by electric charges (assignment and exam assessment).
  • Understand and describe the concepts of magnetic fields induced by currents and the effects of magnetic fields on charges, as well as the energy associated with fields (exam assessment).
  • Mathematically formulate and solve various applications in electromagnetism (assignment and exam assessment).
  • Understand and describe the basic classification of modern materials (assignment and exam assessment)
  • Understand and describe the physical properties that classify a material as metallic, insulating or semiconducting. (assignment and exam assessment)
  • Understand and describe the basics of semiconducting doping and how it leads to applications in electronics (assignment and exam assessment)
  • Understand and describe the effects of physical confinement that lead to new features in nanotechnology (assignment and exam assessment).
  • Mathematically formulate and solve various applications in materials science (assignment and exam assessment).

    In addition I will have developed and demonstrated the following transferrable skills:
  • Writing and communication skills (assignment assessment).
  • Ability to apply computational skills in MATLAB or other languages to the solution of real-world problems in electromagnetism and materials science (assignment assessment).

Pre-requisites

(1) PHYS102 or
(PHYS101 + CHEM211); (2) MATH102. These prerequisites may be replaced by a high level of achievement in level 3 NCEA Physics and Mathematics with Calculus or
other background approved by the Head of Department. RP: MATH103 or
EMTH119.

Restrictions

PHYS202, PHYS314

Recommended Preparation

Timetable 2020

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Friday 12:00 - 13:00 Beatrice Tinsley 111 (17/7-21/8)
Rehua 101 Lectorial (11/9-16/10)
13 Jul - 23 Aug
7 Sep - 18 Oct
Lecture B
Activity Day Time Location Weeks
01 Tuesday 16:00 - 17:00 Jack Erskine 340
13 Jul - 23 Aug
7 Sep - 18 Oct
Lecture C
Activity Day Time Location Weeks
01 Wednesday 13:00 - 14:00 Beatrice Tinsley 111
13 Jul - 23 Aug
7 Sep - 18 Oct
Tutorial A
Activity Day Time Location Weeks
01 Friday 11:00 - 12:00 Putaiao Koiora 275
13 Jul - 23 Aug
7 Sep - 18 Oct

Course Coordinator / Lecturer

Jon-Paul Wells

Lecturer

Konstantin Pavlov

Assessment

Assessment Due Date Percentage  Description
Final Exam 50%
Weekly Homework Assignments 20%
Test One 12.5% To be scheduled during timetabled lecture or tutorial times.
Test Two 12.5% To be scdeduled during timetabled lecture or tutorial times.
Tutorial attendance and participation 5%

Textbooks / Resources

Recommended Reading

I.S. Grant and W.R. Philllips; Electromagnetism (Manchester Physics Series); John Wiley and Sons (The electromagnetism section of this course will be based on this text).

JR Hook and HE Hall; Solid State Physics (Manchester Physics Series); John Wiley and Sons (This text is relevant to the materials section of this course).

Kittel, Charles; Introduction to solid state physics; 6th ed; Wiley, 1986 (This text is relevant to the materials section of this course).

Notes

Electronic copies of the detailed lecture notes will be available on the LEARN system after week two.

Late work is not in general acceptable without a medical certificate.

Additional Course Outline Information

Academic integrity

Indicative Fees

Domestic fee $900.00

International fee $4,250.00

* Fees include New Zealand GST and do not include any programme level discount or additional course related expenses.

Minimum enrolments

This course will not be offered if fewer than 20 people apply to enrol.

For further information see School of Physical & Chemical Sciences on the department and colleges page.

All PHYS206 Occurrences

  • PHYS206-20S2 (C) Semester Two 2020