ENME313-20S2 (C) Semester Two 2020

Electro Technology for Mechanical Engineers

15 points

Details:
Start Date: Monday, 13 July 2020
End Date: Sunday, 8 November 2020
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Friday, 24 July 2020
  • Without academic penalty (including no fee refund): Friday, 25 September 2020

Description

An introduction to the basic principles of circuit theories, RL and RC circuits, transduction principles, mechanical measurements, instrumentation techniques, operational amplifiers, data acquisition, Programmable Logic Control, power electronics and electric machines and control.

Almost all mechanical systems incorporate electrical, electronic, and computational elements in the form of sensors, data acquisition units, signal conditioning and processing, control systems, motors etc. To use these elements effectively, Mechanical Engineers must have an understanding of how they work, their performance characteristics, and limitations. This course covers the fundamental electrical and electronic theories necessary to understand what is going on inside these elements, as well as practical aspects such as how to use sensors and actuators in engineering applications.

The course complements Controls and Vibrations (ENME303) and serves as a foundation for subsequent elective courses in Instrumentation and Sensors (ENME423), Robotics (ENMT482), and Linear Systems Control (ENME403), as well as Final Year Research Projects requiring sensors, instrumentation, data acquisition, and processing.

This course includes 5 laboratory sessions during term 4. The labs are conducted using Arduino micro-controllers with a variety of common sensors and actuators, giving students practical experience with industry standard equipment.

Learning Outcomes

On successful completion of this course students will be able to:

-Explain the fundamental concepts of electrical circuits
-Design and analyse simple electronic circuits
-Describe the principles, performance characteristics and limitations of electric motors
-Apply basic instrumentation techniques, data acquisition, and signal processing to make a physical measurement
-Use an embedded system to control an actuator based on sensor measurements

University Graduate Attributes

This course will provide students with an opportunity to develop the Graduate Attributes specified below:

Critically competent in a core academic discipline of their award

Students know and can critically evaluate and, where applicable, apply this knowledge to topics/issues within their majoring subject.

Pre-requisites

60 points at 200-level in mechanical engineering

Restrictions

ENMT201

Timetable 2020

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Monday 12:00 - 13:00 E9 Lecture Theatre 13 Jul - 23 Aug
7 Sep - 18 Oct
Lecture B
Activity Day Time Location Weeks
01 Tuesday 12:00 - 13:00 E9 Lecture Theatre 13 Jul - 23 Aug
7 Sep - 18 Oct
Lecture C
Activity Day Time Location Weeks
01 Wednesday 09:00 - 10:00 E9 Lecture Theatre 13 Jul - 23 Aug
7 Sep - 18 Oct
Lecture D
Activity Day Time Location Weeks
01 Thursday 10:00 - 11:00 E9 Lecture Theatre 13 Jul - 23 Aug
7 Sep - 18 Oct
Lab A
Activity Day Time Location Weeks
01 Tuesday 13:00 - 16:00 Mech 214 Mechatronics Lab 7 Sep - 11 Oct
02 Wednesday 14:00 - 17:00 Mech 214 Mechatronics Lab 7 Sep - 11 Oct
03 Thursday 14:00 - 17:00 Mech 214 Mechatronics Lab 7 Sep - 11 Oct
04 Friday 11:00 - 14:00 Mech 214 Mechatronics Lab 7 Sep - 11 Oct
Tutorial A
Activity Day Time Location Weeks
01 Thursday 12:00 - 13:00 Eng Core 222 & 223 Drawing Office 13 Jul - 23 Aug
7 Sep - 18 Oct
Tutorial B
Activity Day Time Location Weeks
01 Friday 09:00 - 10:00 Civil - Mech E201 Mech Computer Lab 13 Jul - 23 Aug
02 Wednesday 12:00 - 13:00 Civil - Mech E201 Mech Computer Lab 13 Jul - 23 Aug
Tutorial C
Activity Day Time Location Weeks
01 Friday 13:00 - 15:00 Eng Core 222 & 223 Drawing Office 31 Aug - 6 Sep

Examination and Formal Tests

Test A
Activity Day Time Location Weeks
01 Thursday 18:30 - 19:30 A1 Lecture Theatre 7 Sep - 13 Sep

Course Coordinator / Lecturer

Chris Pretty

Assessment

Assessment Due Date Percentage  Description
6 x HW's 15% 1 per fortnight
Term 4 labs 15% 1 per week for 5 weeks
Test 1 10 Sep 2020 20%
Final exam 50%


The minimum passing mark for this course is 50%. In addition, to pass the course, you must also get a minimum of 50% across the test and exam.

Textbooks / Resources

Recommended Reading

Rizzoni, Giorgio , Kearns, James; Principles and applications of electrical engineering; Sixth edition;

Rizzoni, Giorgio. , Hartley, T. T; Principles and applications of electrical engineering; 5th ed; McGraw-Hill Higher Education, 2007.

Additional Course Outline Information

Academic integrity

Harassment
* Harassment of any sort will not be tolerated.  Each UC student is here to learn and to experience a friendly and supportive community.
* It is every student's right to expect: respect and courtesy from staff and other students, including freedom from harassment of any sort; fair treatment; the ability to speak out about any issues that concern them, without fear of consequences for their safety and well-being.
* Furthermore, each student has the responsibility to: respect the rights and property of others; attend to their own health and safety, and that of others; and behave in a manner towards each other that does not reflect badly on the student body or the University.
* If you, or someone you know, has experienced harassment, please talk to your lecturers, directors of study, or head of department.


Dishonest Practice
* Plagiarism, collusion, copying, and ghost writing are unacceptable and dishonest practices.
* Plagiarism is the presentation of any material (test, data, figures or drawings, on any medium including computer files) from any other source without clear and adequate acknowledgment of the source.
* Collusion is the presentation of work performed in conjunction with another person or persons, but submitted as if it has been completed only by the named author(s).
* Copying is the use of material (in any medium, including computer files) produced by another person(s) with or without their knowledge and approval.
* Ghost writing is the use of another person(s) (with or without payment) to prepare all or part of an item submitted for assessment.

Do not engage in dishonest practices. The Department reserves the right to refer dishonest practices to the University Proctor and where appropriate to not mark the work.
The University regulations on academic integrity and dishonest practice can be found here.

Indicative Fees

Domestic fee $975.00

International fee $5,500.00

* Fees include New Zealand GST and do not include any programme level discount or additional course related expenses.

For further information see Mechanical Engineering.

All ENME313 Occurrences

  • ENME313-20S2 (C) Semester Two 2020