ENEQ610-23X (C) General non-calendar-based 2023

Seismic Hazard and Risk Analysis

15 points

Start Date: Monday, 17 July 2023
End Date: Sunday, 29 October 2023
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 30 July 2023
  • Without academic penalty (including no fee refund): Sunday, 1 October 2023


Fundamental aspects of earthquakes and faulting, terminology for characterisation of earthquake faults, locating earthquakes, and frequency of earthquake occurrence. Strong ground motion recording and analysis, characterisation of strong ground motion in terms of intensity measures and empirical prediction models. Seismic hazard analysis and the development of design ground motions. Selection and modification of as-recorded ground motions for input in seismic response history analyses. Theoretical considerations in wave propagation and seismic site response analysis. Simulation of strong ground motion time series using deterministic and stochastic methods.

The objective of this course is for students to develop an understanding of seismicity and earthquake-induced ground motions, and engineering approaches for modelling them for the purpose of seismic design. While this course does not have a clear precursor course in the Civil undergraduate degree, it is well aligned with Structural and Geotechnical courses such as ENCI437, ENCI438, and ENCN452. In particular, it is noted that the focus of topics in this course essentially provide the necessary ‘ground motion input’ for “ENEQ620: Advanced Geotechnical Earthquake Engineering”, and therefore ENEQ620 is strongly recommended in conjunction with this course.

This is a postgraduate course, and as such it is expected that students will complete a significant amount of background reading of relevant textbooks and technical publications (journals etc.). The aim of the contact hours in this course are to consolidate students understanding of the relevant material and to provide the opportunity of engage with the lecturer and teaching assistants.

Learning Outcomes

  • Understand the physical processes which cause earthquakes, the various terminologies which are used to characterize them, and the relationships describing the frequency of occurrence of earthquakes in a regional- and fault-specific context.
  • Understand the measurement of, and be able to process, earthquake-induced strong ground motion records, characterize strong ground motions in terms of amplitude, frequency content, and duration; and predict ground motion characteristics using empirical and physics-based models.
  • Understand, and be able to perform a probabilistic seismic hazard analysis and determine design ground motion intensity measures.
  • Select and modify recorded ground motions for use in dynamic seismic response analyses.


Subject to approval of the Head of Department or the Programme Director.



Timetable Note

The entire content of the source will be delivered online, using the following primary mechanisms:
• Weekly discussion sessions will be held on Zoom to enable group discussion on the topics associated with the weekly material. Students will have the opportunity to lead discussion topics in these sessions, and also ‘question voting’ prior to the discussion session in order to identify priority topics to address.
• Weekly office hours will be held on Zoom to enable small clarification questions that people have associated with material that has been covered in previous weeks (i.e., to fill gaps in cumulative knowledge)

Course Coordinator

Brendon Bradley

We will use Slack as the primary means of collaboration and learning throughout this course. If you haven’t used Slack before you can find more info here: https://slack.com/intl/en-nz/help/articles/218080037-Getting-started-for-new-members
(you will be added to the Slack channel following enrolment in the course).

The basic outline of this Slack workspace involves the following channels:
#admin - for misc queries about the course admin (i.e., non-technical items)
#notes - contains the written content for the course: chapters, exercises, assignments, exam etc.
#eq-sources , #ground-motion , #seismic-hazard , #gm-selection - examples of topic-specific channels that can be used for discussions associated with your queries as you learn this content.
#office-hours - consider this as a whiteboard to use for items that you want discussed at specific office-hours that will be held
#assignments - message board for specific queries on the assignments


Assessment Due Date Percentage 
Assignments (2) 50%
Final Exam 50%

The assessment for this paper will comprise two components – assignments, and the final
exam. The assignments will be used to ensure you have an adequate grasp of the theoretical
basis of the taught material, particularly related to computational aspects. The final exam will
focus on theoretical and practical (but not simulation-intensive) aspects of the course.

1. You cannot pass this course unless you achieve a mark of at least 40% in the final exam.
2. All assignments must be submitted by the due date. Late submissions will not be accepted. If a student is unable to complete and submit an assignment by the deadline due to personal circumstances beyond their control they should discuss this with the lecturer involved as soon as possible (preferably prior to the due date).
3. All assignments can be done individually or in pairs. If done in pairs (preferred) only a single submission for marking is required and both students receive the same mark. It is important that both students play an equal role in completing the assessment as the internal assessment is designed to prepare for the formal assessments (i.e. final exam).

Textbooks / Resources

This course is based on the textbook:
Baker JW, Bradley BA, Stafford PJ. Seismic Hazard and Risk Analysis. Cambridge University Press. 2021.

A digital copy of this book is accessible by students during the course. This book is due for physical publication in 2021 Q3.


At the conclusion of the course we will seek feedback from you on the success, or otherwise, of the course itself, and on the performance of the lecturers. This feedback is very important, both for the teaching team and the department, as we try to evaluate and improve this course. The comments you provide are taken seriously by the department and I thank you in advance for your contribution to our quality assurance processes.

However, while the formal process I have described is important we would also appreciate informal feedback as the course progresses. So feel free to send us an email or drop by our offices if there are comments you think would be helpful.

Indicative Fees

Domestic fee $1,164.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

Minimum enrolments

This course will not be offered if fewer than 5 people apply to enrol.

For further information see Civil and Natural Resources Engineering .

All ENEQ610 Occurrences

  • ENEQ610-23X (C) General non-calendar-based 2023