EMTH119-21S2 (C) Semester Two 2021

Engineering Mathematics 1B

15 points

Details:
Start Date: Monday, 19 July 2021
End Date: Sunday, 14 November 2021
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 1 August 2021
  • Without academic penalty (including no fee refund): Friday, 1 October 2021

Description

A continuation of EMTH118. Topics covered include methods and Engineering applications of calculus, differential equations, and linear algebra, along with an introduction to probability. This course is a prerequisite for many courses in engineering mathematics and other subjects at 200 level.

EMTH119 consolidates concepts from EMTH118 and introduces more advanced ideas in calculus, linear algebra and probability. It includes applications of this mathematics to applied and engineering problems, and uses python to implement numerical methods. It is a prerequisite for many courses in engineering mathematics and other subjects at the  200-level.

Topics:
First-order ordinary differential equations with applications. Direction Fields and Euler's method. Polar form of complex numbers. Second-order ordinary differential equations with applications.
Newton-Raphson for root finding. Introduction to convergence of sequences and series. Applications of differentiation to approximation. Approximation by Taylor polynomials. Landau’s notation and order of magnitude.
Determinants, eigenvalues and eigenvectors.
Sets and probability. Discrete random variables. Continuous random variables. Expectation, mean, and variance.
Integration of rational functions via partial fractions. Parametrised curves. Arc length. Numerical integration including the trapezium rule.
Multivariate differentiation and classification of critical points.

Learning Outcomes

  • Students who have succeeded in this course will be able to
  • use calculus, algebra or probability to
      - evaluate integrals arising in mathematics and engineering
      - solve first and second order differential equations
      - find Taylor approximations to functions
      - calculate mean and variance of random variables and solve probability problems arising in engineering applications
      - calculate determinants, eigenvalues and eigenvectors
      - investigate the geometry of multivariable functions and classify critical points
  • demonstrate understanding of the mathematical topics in the course by
      - giving definitions of fundamental concepts
      - competent manipulation of functions, matrices, random variables and complex numbers
      - choosing effective solution techniques for given problems
      - verifying correctness of mathematical calculations
      - Knowing when and how to apply suitable numerical methods
  • describe and interpret the meaning of mathematical solutions to engineering problems (particularly differential equations and random variables)
  • synthesise material from different sections of course (for example, using integration techniques and limit evaluation to solve differential equation or probability problems)

Pre-requisites

Restrictions

MATH103, MATH109, MATH199

Timetable 2021

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Monday 09:00 - 10:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
02 Monday 11:00 - 12:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
Lecture B
Activity Day Time Location Weeks
01 Wednesday 10:00 - 11:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
02 Wednesday 13:00 - 14:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
Lecture C
Activity Day Time Location Weeks
01 Thursday 09:00 - 10:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
02 Thursday 12:00 - 13:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
Lecture D
Activity Day Time Location Weeks
01 Friday 09:00 - 10:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
02 Friday 13:00 - 14:00 C1 Lecture Theatre
19 Jul - 29 Aug
13 Sep - 24 Oct
Tutorial A
Activity Day Time Location Weeks
01 Monday 08:00 - 09:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
02 Monday 09:00 - 10:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
03 Monday 10:00 - 11:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
04 Monday 11:00 - 12:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
05 Monday 12:00 - 13:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
06 Monday 13:00 - 14:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
07 Monday 14:00 - 15:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
08 Monday 15:00 - 16:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
09 Monday 16:00 - 17:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
11 Tuesday 08:00 - 09:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
12 Tuesday 09:00 - 10:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
13 Tuesday 10:00 - 11:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
14 Tuesday 11:00 - 12:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
15 Tuesday 12:00 - 13:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
16 Tuesday 13:00 - 14:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
17 Tuesday 14:00 - 15:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
18 Tuesday 15:00 - 16:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
19 Tuesday 16:00 - 17:00 Jack Erskine 038 Lab 4
26 Jul - 29 Aug
13 Sep - 24 Oct
21 Wednesday 08:00 - 09:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
22 Wednesday 09:00 - 10:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
23 Wednesday 10:00 - 11:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
24 Wednesday 11:00 - 12:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
25 Wednesday 12:00 - 13:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
26 Wednesday 13:00 - 14:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
27 Wednesday 14:00 - 15:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
28 Wednesday 15:00 - 16:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
29 Wednesday 16:00 - 17:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
31 Monday 10:00 - 11:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
32 Tuesday 09:00 - 10:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
33 Monday 12:00 - 13:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
34 Monday 13:00 - 14:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
35 Monday 14:00 - 15:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
36 Tuesday 10:00 - 11:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
37 Tuesday 11:00 - 12:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
38 Tuesday 12:00 - 13:00 Jack Erskine 436 Computer Lab
26 Jul - 29 Aug
13 Sep - 24 Oct
39 Wednesday 11:00 - 12:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
41 Wednesday 15:00 - 16:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct
44 Tuesday 15:00 - 16:00 Jack Erskine 033 Lab 1
26 Jul - 29 Aug
13 Sep - 24 Oct

Examination and Formal Tests

Test B
Activity Day Time Location Weeks
01 Wednesday 16:00 - 17:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
02 Wednesday 17:00 - 18:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
03 Wednesday 18:00 - 19:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
04 Wednesday 19:00 - 20:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
05 Thursday 16:00 - 17:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
06 Thursday 17:00 - 18:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
07 Thursday 18:00 - 19:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
08 Thursday 19:00 - 20:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
09 Friday 12:00 - 13:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
10 Friday 13:00 - 14:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
11 Friday 14:00 - 15:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
12 Friday 15:00 - 16:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
13 Friday 16:00 - 17:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
14 Friday 17:00 - 18:00 Jack Erskine 035 Lab 2
4 Oct - 10 Oct
15 Thursday 15:00 - 16:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
16 Thursday 16:00 - 17:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
17 Thursday 17:00 - 18:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
18 Thursday 18:00 - 19:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
19 Thursday 19:00 - 20:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
20 Friday 12:00 - 13:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
21 Friday 13:00 - 14:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
22 Friday 14:00 - 15:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
23 Friday 15:00 - 16:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
24 Friday 16:00 - 17:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct
25 Friday 17:00 - 18:00 Jack Erskine 033 Lab 1
4 Oct - 10 Oct

Course Coordinator / Lecturer

Rua Murray

Course Administrator

Phillipa Gourdie

Lecturers

Phillipa Gourdie , Gunter Steinke and Michael Langton

Textbooks / Resources

Recommended reading:
Stewart, James: Calculus Early Transcendentals. 8th edition. ISBN: 9781305272378

Indicative Fees

Domestic fee $986.00

International fee $5,500.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Mathematics and Statistics.

All EMTH119 Occurrences