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Executive summary  
 

- The research question for this project is: How can we better understand the synoptic and 

microscale weather processes at Mt Hutt?  

- This report discusses the technical data manipulation techniques used to identify weather 

processes. Different datasets provided from our community partner were wrangled using R 

studio. Visualisation of the data was done using R studio & Excel. Analysis was also completed 

to validate our community partners weather stations. 

- Mt Hutt has complex weather dynamics due to the topography of the southern alps, links 

between microscale and synoptic processes were made to explain the results we found.   

- This project provides a solid foundation for future climatic research in Mt Hutt and the wider 

Canterbury alpine region. In the light of climate change, historic climate data is becoming more 

relevant and important to understand and combat this increasing threat. 

- Limitations were found when undertaking this project such as group resources as well as 

inherent weather station errors/missing data. 

- Code will be provided to our community partner to improve the data wrangling process. 

 

 

 

 

1. Introduction  

This report focuses on the analysis of weather station data in the Southern Alps, specifically the 

Mt Hutt region. A Cass Research Area Management Group member Dave Kelly has set up 

three weather stations at different elevations adjacent to the popular Mt Hutt Ski Field Access 

Road with the first station erected in 1995 and still running at present. These stations record 

temperature, rainfall, and sunlight in different time scales, this is good for our community 

partners research scope in biological sciences but lacks any windspeed and wind direction data 
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which is fundamental for climate analysis. To analyse weather station data in the Mt Hutt 

region, three additional weather stations were chosen from NIWA (CliFlo, 2023) to understand 

wind patterns from the head of the main divide catchments to the mid canterbury plains 

(Rakaia/Snowdon/Winchmore). This project builds an understanding of the microclimate and 

synoptic processes found within the Mt Hutt region while providing code to help with further 

data wrangling in the future.   

2. Study Site  

The region of interest in this project was Mt Hutt, found to the west of the Canterbury Plains 

and reaching a height of 2190m. The mountain houses a popular ski field approximately 100km 

from Christchurch as seen in Figure 1 within the Hakatere conservation park between the 

Rakaia and Rangitata rivers.  This region of the southern alps is in the lee of the Main Divide 

which tends to receive less precipitation and warmer temperatures on average compared to the 

west coast (Sturman & Spronken-Smith, 2001). 

Rakaia AWS is found deep in the alps at an elevation of 1752m above sea level. At this site, 

there is a strong influence of dynamic weather and funnelling due to the complex topography 

which can exacerbate weather station recordings. Snowdon AWS is found at the head of the 

braided river segment of the Rakaia River. This site is 420m above sea level which is 

significantly lower than Rakaia AWS. The final NIWA site is Winchmore, which is in the heart 

of the mid canterbury plains found 12km from Ashburton and 30km from the coast. These three 

independent sites were chosen to give us three different topographical areas within the region 

to understand the effects of weather.  
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Figure 1: Map representing the study site. Mt Hutt found within the subset. 

 

3. Stake Holders  

Our primary stakeholder is Dave Kelly (member of the Cass Research Area Management 

Group). They provided valuable temperature and rainfall measurements to better understand 

weather patterns. A key focus was automation of data wrangling to validate the weather station 

readings because this process is currently labour intensive. 

This project has significance for local Iwi in future research because climate data can be used 

to understand ecological processes that implicate food security and biodiversity. Climate data 

also informs research around potential health and wellbeing issues derived from climate 

change. The information validated during this study can be used to gain insights of how the 

local environment has been affected over time.  

4. Background Information  

4.1           Scales 

It is important to understand microclimates and how they affect weather station readings. 

Microclimates are local atmospheric conditions which differ from the surrounding region. This 

can be due to a range of factors such as topography, vegetation, anthropogenic interference, or 

atmospheric processes such as energy budgets and lapse rates. Larger scale weather processes 

are found on the synoptic scale, this scale is where pressure systems have an influence on the 

weather and control the environment at a nationwide scale. 

       I.         Energy Budget 

Weather at a global scale is driven by the surface energy budget. The sun emits shortwave 

radiation, which is mostly absorbed by the earth’s surface, longwave radiation is then released 

thermally. This outgoing longwave radiation is what drives the global circulation by heating 

parcels of air producing large-scale winds and cells. Incoming shortwave radiation can also be 

deflected back into the atmosphere from the surface, this outgoing shortwave reflects off 

surfaces with a high albedo such as snow and ice which absorbs extraordinarily little of this 

energy. Longwave outgoing can also be reflected into the earth's surface from things such as 

canopies and clouds. The four inputs for this system work together to circulate air parcels 

around the globe (Barry, R. G. et al 2009). 

   II.         Lapse rates 

Lapse Rates are an important thermal dynamic concept used extensively in this project. This is 

the rate of temperature change in the atmosphere with elevation. This is due to the decrease in 

air pressure at higher elevations where expansion of the air parcel occurs. This expansion does 

work on its surroundings without exchanging heat that in turn lowers the air temperature 

(Daidzic, N. 2019). There are numerous types of lapse rates, namely Environment Lapse Rate 

(ELR) and Dry Adiabatic Lapse Rate (DALR). ELR is the actual rate at which temperature 
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decreases with altitude whereas DALR is the rate at which temperature of dry air parcels 

decreases with altitude. DALR is used as a ‘ruler’ to identify if the atmosphere is stable or not. 

Stability is how likely an air parcel is to return to its position. An analogy to understand this 

process is pushing a ball up a valley wall, this is very likely to return to the bottom of the valley 

rendering it stable. The inverse of this is pushing a ball off the top of a hill, this is very unlikely 

to result in the ball returning to the top of the hill. If the ELR falls below the DALP then the air 

parcel is considered unstable and vice versa (Dawe, 2022).  

4.2          Weather Station Data Collection 

Literature on weather station data collection shows examples of difficulties and the usefulness 

of using weather stations to record data. Weather station data has been found to be accurate for 

the vicinity of the station, however interpolation is often required between stations and require 

maintenance along with constant periods of measurement to provide useful data (Mendelsohn 

et al., 2007). Research performed by Hahn et al. (2022) found that privately owned weather 

stations have the potential to provide a positive impact on meteorology and climate data. 

Although it is also mentioned that careful quality control is required for the data to be useful 

due to the non-uniform monitoring of the privately owned stations. They emphasise that 

unknown environmental conditions and errors in measurement can lead to possible impairments 

in analysis.  

 

4.3          Validating Weather Station Data 

The process of data wrangling for weather stations is complicated by the variability of valid 

results as weather conditions fluctuate often. When reviewing literature about this issue, two 

main steps were identified. These include statistical processing at the single station level, and 

then spatial autocorrelation of weather stations in proximity to each other (Beele, et al. 2022), 

(Liu & Zhang 2021). This can be done because climatic processes are continuous in space.  

Beyond these two broad approaches, the methods used for data correction are very dependent 

on the number of available weather stations, the density of stations, and the uniformity of the 

data collection (Beele, et al. 2022). More stations and longer duration of data collection 

produces better results because statistical error is reduced, while dense point data improves the 

accuracy of spatial analyses (Skrynyk, et al., 2023), (Beele, et al. 2022). 

5. Methods 

5.1       Weather Station Data Wrangling 

This project will be limited by the number of available stations, largely because the alpine 

region is less populated and therefore there is less interest in crowd sourced weather monitoring, 

and it is harder to maintain the hardware. However, there is a good density of weather stations, 

especially for temperature in the past three years because of ongoing research by RainfallNZ, 

who have placed a transect up Mt Hutt. These stations were invaluable to this project, 

confirming readings and trends identified on the mountain. 
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Figure 2 shows the first stages of the data wrangling for all three stations. This code takes two 

excel files containing weather station data and formats them into data frames that are ready for 

comparison. The first few steps include reading the data, and defining three functions, two of 

which relate to reformatting the data for further processing and one which applies a correction 

for the lapse rate between the two supplied data sets. The lapse rate established by RainfallNZ 

is -0.05 degrees/meter. This value has been used for these steps. 

  

Figure 2: Flow diagram of steps used in data wrangling 

 

The next step is an if statement which checks which secondary source is being used (Figure()). 

This is done because RainfallNZ and the three study stations have different processing 

requirements. The output of the if statement is always a data frame with four columns, for date, 

maximum, mean, and minimum daily averages. A second date data frame is created using 

specified start and end dates so that the user can control their period of interest. The data from 

the primary weather station is read into a data frame and merged onto the dates data frame. This 

will help users identify areas of missing data collection. Finally, the renaming function is 

applied to the primary data set. 
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Figure 3. Flow diagram of steps used in data wrangling. 

 

One gross error that has been identified is due to recurring battery failures. This sometimes 

produces a repetitive extreme reading for the panel sensors which are filtered out of the 

dataset (Figure 4). For this reason, it is helpful to record the status of the battery, because it 

can be an indicator of poor hardware performance. The last three steps are statistical 

comparisons of readings, first within the primary data set and then to the averaged values of 

the secondary dataset. Thresholds are set based on the maximum difference between stations 

after a correction for bias has been applied. Values are only modified if they will not intersect 

with their corresponding minimum, mean, and maximum daily readings. This was an issue 

which arose when applying spatial correlation analysis over larger distances. This is due to 

higher variability in the data, which lead to greater processing error. 
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Figure 4. Flow diagram of steps used in data wrangling 

 

For further detail please see Appendix 1. 

5.2     Temperature 

RainfallNZ has ten temperature sensors situated on Mount Hutt in an elevation transect. For 

this project we had a specific focus on their Site 6 which has an elevation of 1090m and is a 

short distance to our middle elevation site. Their data is recorded in half an hour intervals and 

measures temperature in degrees Celsius. Our community partner collects daily temperature 

averages, so a pivot table was used to generate daily temperature averages from the hourly 

values of the RainfallNZ data. From there a comparison of daily average temperatures was 

conducted between the two sites by creating a conditional formatting rule to display a heat map 

substitute on excel. 

5.3     Rainfall 

The low and mid-altitude weather stations employ tipping bucket rain gauges for rainfall 

measurement. Rainfall measurement was not performed at the highest altitude site as weather 

conditions at high altitudes require more upkeep and are more likely to be damaged by 

environmental hazards. The tipping bucket rain gauges measure the amount of rainfall by 

collecting precipitation until a specific volume of water is in the bucket, at which point the 

bucket tips and the data is recorded by a connected data logger. The rain gauges used in the 

weather stations were set to tip when the bucket collected 0.2mm of water, meaning that a 

reading was made every 0.2mm. Comparisons were made between the low and mid-altitude 

stations along with weather stations set up by Environment Canterbury (ECan) around the Mt 

Hutt area.  
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5.4       Wind 

To analyse wind in the Mt Hutt area, 3 NIWA stations were gathered (Rakaia, Snowdon, 

Winchmore) to give three different topographical areas within the region to understand the 

effects of weather. These sites are located at over 1700m asl at the base of the main divide to 

160m asl in the heart of the canterbury plains. To analyse the wind at these sites, windspeed vs 

direction graphs were created overlaying all sites in 3-month periods from summer 2015/16 

and winter 2016. Windspeed vs temperature graphs were also created to understand the effects 

of atmospheric mixing and temperature structures.  

6. Results 

6.1       Temperature 

 

Figure 5. Line graph showing weekly average of daily temperatures for 2021 at the Mid elevation site on Mt Hutt. 

 

Figure 6. Line graphs showing weekly average of daily temperatures for 2021 at the Low elevation site (left) and high 

elevation site (right) on Mt Hutt 
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Figures 5 & 6 represent weekly averages of daily temperature for 2021 at all 3 sites on Mt 

Hutt. From the graphs, there seems to be a clear temperature lapse rate. For the higher 

elevation site, the variability between the max and min absolute values is less dispersed 

compared to the array in the lowest elevation site. Large temperature fluctuations are present 

during warmer summer months and tend to dampen in winter months.  

Following Figures 5 & 6, Figure 7 shows a clear positive correlation between windspeed and 

temperature. 

Figure 7. Kernal density plots showing the relationship between Wind Speed (m/s) and Temperature (degrees Celsius) for 

Winchmore and Rakaia. This is data from the 10/03/2022 - 10/10/2023. Areas with purple show less frequent occurrence, 

and areas with blue to green indicate a higher frequency of occurrence. *Note y-axis scale is not the same as technical 

difficulties were endured with the python coding process. 
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Figure 8. The gradient of 0.8084 means that for every increase in temperature in Rakaia of 1 degree, temperature increases 

by 0.8084 degrees in Winchmore. The y-intercept of 8.8505 means that when the temperature in Rakaia is 0 degrees, the 

temperature in Winchmore is 8.8505 degrees.  

 

Figure 9. The gradient of 0.8068 means that for every increase in temperature in Winchmore of 1 degree, temperature 

increases by 0.8084 degrees in Snowdon. The y-intercept of 1.4675 means that when the temperature in Winchmore is 0 

degrees, the temperature in Snowdon is 1.4675 degrees. 
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Figure 10. The gradient of 0.8679 means that for every increase in temperature in Rakaia of 1 degree, temperature in 

Snowdon increases by 0.8679 degrees. The y-intercept of 8.0032 means that when the temperature in Rakaia is 0 degrees, 

the temperature in Snowdon is 8.0032 degrees.  

 

6.2       Rainfall 

Figure 11 shows the accumulation of rainfall between the mid elevation site (MM) and ECan’s 

station located at a similar altitude and within proximity. The findings show that ECan’s station 

recorded higher amounts of rainfall when compared to the MM site in which the disparity 

becomes clearer as time progresses. Figure 12 shows the same stations being compared 

although focuses from 2016 onward in which an Equipment change to the mid altitude tipping 

bucket rain gauge was made. Similar findings were found between the two stations such as the 

reduction of rainfall gathered around the end of 2018 and the rise in the middle of 2021, 

although the mid altitude station is shown to be recording significantly lower measurements. 

Figures 13 and 14 show the accumulation of rainfall between the MM site and the low elevation 

site. Figure 13 shows that the mid- elevation site gathered more rainfall than the low-elevation 

site. However, Figure 14 shows that during 2016-2023, the low elevation site was gathering 

higher amounts of rainfall compared to the mid elevation site. These results suggest there may 

have been an error with the equipment collecting rainfall or difficulties with the environment 

at the mid-elevation site. This is supported by Figure 15 in which shows the low altitude site is 

collecting lower amounts of rainfall when compared to ECan’s station near the mid elevation 

site. 
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Figure 11. Line graph showing the accumulation of rainfall recorded at the mid elevation site alongside the recordings from 

the ECan Mt Hutt Station. The recordings shown are during 1/01/2005-1/01/2023. 

 

 

Figure 12. Line Graph showing the accumulation of rainfall recorded at the mid elevation site alongside the recordings from 

the ECan Mt Hutt Station. The recordings shown are during 1/01/2016-1/01/2023. 
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Figure 13 Line graph showing the accumulation of rainfall recorded at the low elevation site alongside the recordings from 

the mid elevation site. The recordings shown are from 1/01/2006-31/12/2013. 

 

 

Figure 14. Line graph showing the accumulation of rainfall recorded at the low elevation site alongside the recordings from 

the mid elevation site. The recordings shown are from 1/01/2016-1/01/2023 
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Figure 15. Line graph showing the accumulation of rainfall recorded at the low elevation site alongside the recordings from 

the ECan Mt Hutt station. The recordings shown are from 1/01/2017-1/01/2023 

 

 

6.3       Wind     

Figures 16 & 17 show how topography can alter the local wind patterns in an area. Figure 13 

(Rakaia) shows that NW winds tend to produce the highest windspeeds, there seems to be much 

lower wind speeds at all the other wind directions. Comparing summer and winter plots in 

Figure 16, there tends to be lower winds speeds during the cooler winter months. This is 

supported by Figure 7’s kernel density plot. N/NE winds tend to have the highest windspeeds 

in summer whereas the NW winds dominate during the winter months. Winchmore's site has 

little to no topographical relief which can interfere with wind patterns thus becoming more 

susceptible to large scale wind patterns rather than dynamic small-scale patterns. 

 
Figure 16.  Wind rose plots for Rakaia WS representing Windspeed vs Direction (Left, 2023 Winter / Right, 2023 

Summer) 
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Figure 17. Wind rose plots for Winchmore WS representing Windspeed vs Direction. (Left, July 2022 / Right, December 

2022) 

7. Discussion 

7.1       Lapse rates on Mt Hutt 

Interlinking with the data provided by Tim Kerr and Heather Purdie has created a 

guided understating of how air temperature lapse rate occurs on Mount Hutt. 

Shown Figure 18, data in the left column represents 1090m (Kerr and Purdie) and 

1070m data in the right column (Kelly). Although there are some days where the 

1090m site experiences higher temperature recordings, the difference between 

the sites is insignificant. When the 1090m sight recorded cooler temperatures, it 

reflects active air temperature lapse rates that occurred   

Figure 18 (to the left). Snapshot of the conditionally formatted data in excel showing the 

differences in temperature for the 1090m and 1070m sites. Specific to the first few days of January 

2022. 

 

7.2       Microclimates at Mt Hutt 

Understanding microclimates at our community partners sites can build trust in the data to be 

representative. The first site at 450m is raised on a mound above a paddock with a line of trees 

towards the south that shelter it from strong wind. At 450m, snow is rare which keeps annual 

temperatures consistent with the wider region. From installation in 2005 to Feb 2020, a handful 

of eucalyptus trees shaded the weather station during winter months. At Noon sun was halfway 

up the tree when seen from solar panel. This is an environmental factor which may affect the 

representation of data for the wider region. These trees were cut down in February 2020. 
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The second 1070m site is located at Scott's Saddle (approx. ½ up access rd.) (figure 16). This 

site has had two weather station locations. The first location (1995-2005) was towards the road 

end of the ridge, slightly higher than the present site. This can be subject to higher winds and 

sun from all directions. The second location (2004-present) is located slightly south below the 

ridge, which is more protected from prevailing NW winds, this may also see shade earlier in 

the day compared to old site which will yield cooler air temperatures. Both sites are found in 

high density shrubbery which can obstruct sensors if growth is uncontrolled. Snowfall can occur 

at this elevation which lowers air temperature due to a high albedo. When snowfall is found, 

this lowers surface temperatures to 0 degrees Celsius regardless of air temperatures which can 

skew data. Snow at this elevation is intermittent and tends to melt within a few days/weeks. 

 

Figure 19: Mount Hutt MM Site 1070m (Kelly 2001) 

 

 

The third site is located below the top car park of the Mt Hutt Ski Field. This site has had two 

weather station locations. The first location (2004-2009) was at 1560m near steep bluffs. The 

second location (2009-present) is located at 1520m in flatter basin, 40m below previous site 

with no major features in proximity other than a stream to the northeast and the main carpark 

to north. These sites are subject to constant snowpack throughout winter and into spring (June-

October) which can at times bury the station. During summer, the site is subject to scree (loose 

rock) slopes with little vegetation. 

 

7.3      Synoptic Scale Processes 

Synoptic scale circulation represents a small cog in the larger global circulation system. The 

data analysed in this report has emphasised how synoptic conditions interlink with local 
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weather patterns. As mentioned, solar radiation plays a pivotal role in all-weather activity. 

Unequal distribution of heat leads to horizontal motion known as wind and is subsequently 

associated with vertical motion which causes weather.  

Over seasonal to decadal time scales, the advection of air masses over the Southern Alps is 

heavily influenced by the position of the Westerly wind belt and meridional circulation 

anomalies of the New Zealand region (Clare et al., 2002). These westerly winds tend to be 

stronger in the Southern Hemisphere due to the scarcity of land mass. Surface roughness such 

as the Southern Alps can however reduce surface wind speed due to the disspation of kinetic 

energy to molecular heat and friction. In a stable atmosphere, stronger airflow has sufficient 

energy and can be lifted accelerated when passing over hills or mountain tops. The interaction 

of airflow with the Southern Alps can cause the development of features such as the Foehn 

effect, Lee waves and severe downslope winds (Sturman & Spronken-Smith, 2001). According 

to Sturman and Spronken-Smith (2001), the interaction of synoptic systems with the mountains 

causes subtle changes in the pressure field perturbation to which local airflow responds, making 

mesoscale forecasting difficult. An example of this includes the lee-trough north-easterlies over 

Canterbury, which may combine with the local sea breeze system to produce enhanced on-

shore flow – as shown in Figure 20. 

 

Figure 20. Schematic showing how the Southern Alps can generate Foehn events and how other directional systems are 

affected. 

 

Synoptic conditions can also be the driver behind temperatures recorded and anomalies. There appears 

to be a large peak in temperature on February 22, 2021 seen in Figures 5 and 6. Further investigation 

was conducted to conclude whether synoptic circulation may be the cause for the high temperature 

recorded. Figure 21 displays mean sea level pressure (MSLP) maps acquired from the Australian 

Bureau of Meteorology (Bureau of Meteorology, 2019), for the day prior and the day of the peak 

temperature event. The maps indicate a large high-pressure system over the Canterbury region. The 

proximity of the isobars suggests there also was little to no wind on these days. As noted previously, 

high-pressure systems represent clear skies and the atmosphere being statically stable near the surface. 

Inferring from this, the peak in temperature is relatively normal given the synoptic conditions on that 

day. 
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Figure 21. MSLP charts show the large high-pressure system migrating eastward over the South Island 

 

8. Limitations 
During this research project, constraints and challenges that impacted the scope and outcome 

of the study were observed. The following section provides the limitations faced during the 

research period.  

The first limitation to mention is the time constraints of the project. The period for the project 

was twelve weeks and with many of the members having external influences reducing the time 

able to spend on the project. The time constraints led to the scale of the project being reduced.  

Additionally, the quality of the weather station data provided from our community partner 

provided a limitation as our research heavily relied on it. Inconsistencies in data collection, 

recording errors and a lack of wind speed or direction measures raised concerns regarding the 

accuracy and reliability of the findings to be made. Additional station data from third party 

sources helped to mitigate this limitation. 

The weather station data provided also showed challenges regarding homogeneity regarding 

the changes in instrumentation, location, and data collection practices over time. These factors 

can potentially add biases onto the data, leading to possible inaccuracies and misinterpretation 

and should be considered when interpreting the results.  

9. Conclusion 
Throughout the course of the project, many secondary data sources were collected to be used 

along with our study stations. The three NIWA stations gathering wind speed and direction, the 

temperature lapse rate project by RainfallNZ, and ECan’s weather stations, were all used to 

observe the variability of the microclimate of the Southern Alps. 
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Observations on wind speed and direction, temperature, and rainfall were analysed for their 

effects in the Mt Hutt area, showing relationships between microclimates and synoptic weather 

patterns. The effect of the lapse rate is particularly prominent in this alpine region. 

Alongside analysing the findings from the stations. The code produced will reduce labour and 

human error in future collection of this data, which occurs frequently though out the year. 
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Appendix 1 

###########################################################################

##### 

# INPUT DATA: Adjust as needed  

# Excel sheet information for the station of interest (primary data) (file 

types .xls or .xlsx) 

file_Path <- 'GEOG309/MtHuttRawWeather_MM_2015-2023.xls'             

#directory of file 

sheet_name <- 'Raw'    # name of the workbook sheet which contains the data. 

empty_rows = 1 # number of rows above the header, not including column names. 

site_name = 'MM'                       #choose from 'ML', 'MM', or 'MU' 

elevation = 1070                       # elevation of the primary data site 

 

# Secondary data set information from a nearby station(s) (file type is .xls 

or .xlsx) 

nearby_file_Path<-"GEOG309/MtHuttRawWeather_ML450m.xls"   #directory of file 

nearby_sheet_name <- 'Raw2017_2023'# name of the workbook sheet which 

contains the data. 

nearby_empty_rows = 2 # number of rows above the header, not including column 

names. 

nearby_elevation = 450               # elevation of the secondary data site 

nearby_source = 'ML'         #choose from 'rainfallNZ', 'ML', 'MM', or 'MU' 

 

# dates of interest  

start_hour <- 8 # time data is collected each day for the primary station 

data set.  

start_date<- ymd(20220101) # in format year month day 

end_date <- ymd(20221230) 

 

# File name for the result to write to: 
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output_path = "GEOG309/ReliableData_Example.xlsx" 

###########################################################################

##### 

lapse_rate = -0.05 # Value obtained from RainfallNZ transect: rate is -0.05 

degrees/metre. 

# setup libraries and package installs-------------------------------------

------- 

 

install.packages('tidyverse') 

install.packages("readxl") 

install.packages("writexl") 

install.packages("openxlsx") 

library(writexl) 

library(tidyverse) 

library(lubridate) 

library(readxl) 

library(data.table) 

library(openxlsx) 

 

###########################################################################

##### 

# Define Functions 

extract_day = function(datetime_obj) { 

  #floor the date according to the time of day specified 

  # Extract the year, month, and day from the date-time object 

  date_part <- as.Date(datetime_obj) 

   

  # Check if the hour for each date-time is earlier than the specified 

starting hour 

  for (i in 1:length(datetime_obj)) { 

    if (hour(datetime_obj[i]) < start_hour) { 

      # Subtract one day from the corresponding date 

      date_part[i] <- date_part[i] - days(1) 

    } 

  } 

   

  return(date_part) 

} 

 

 

lapse_rate_adjust = function(value){ 

  # apply a correction to secondary data accounting for the lapse rate 

  adjusted_value = value + (nearby_elevation-elevation)*lapse_rate 

  return(adjusted_value) 

} 

 

rename_columns <- function(data_set){ 

  #generalise column names for further processing. 

  data_set <- data_set %>%  

    rename_with(~gsub("Me", "Mean", .x), .cols = contains("Me")) 

  data_set <- data_set %>%  

    rename_with(~gsub("av", "Mean", .x), .cols = contains("av")) 

  data_set <- data_set %>%  

    rename_with(~gsub("avg", "Mean", .x), .cols = contains("avg")) 

  data_set <- data_set %>%  

    rename_with(~gsub("mx", "Max", .x), .cols = contains("mx")) 

  data_set <- data_set %>%  
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    rename_with(~gsub("Mx", "Max", .x), .cols = contains("Mx")) 

  data_set <- data_set %>%  

    rename_with(~gsub("av", "Mean", .x), .cols = contains("av")) 

  data_set <- data_set %>%  

    rename_with(~gsub("Mn", "Min", .x), .cols = contains("Mn")) 

  data_set <- data_set %>%  

    rename_with(~gsub("mn", "Min", .x), .cols = contains("mn")) 

  data_set <- data_set %>%  

    rename_with(~gsub("mean", "Mean", .x), .cols = contains("mean")) 

  data_set <- data_set %>%  

    rename_with(~gsub("min", "Min", .x), .cols = contains("min")) 

  data_set <- data_set %>%  

    rename_with(~gsub("max", "Max", .x), .cols = contains("max")) 

  data_set <- data_set %>%  

    rename_with(~gsub("Min.batt", "Battery", .x), .cols = contains("batt"))  

  data_set <- data_set %>%  

    rename_with(~gsub("Meanan", "Mean", .x), .cols = contains("Meanan")) 

  return(data_set) 

} 

 

###########################################################################

##### 

# Read data from Excel 

temps2 <- read_excel(nearby_file_Path,  

                     sheet = nearby_sheet_name,  

                     skip = nearby_empty_rows,  

                     trim_ws = TRUE) 

 

if (nearby_source == 'rainfallNZ') { 

  # Rename columns with elevation values 

  temps2 <- temps2 %>% 

    rename('1755' = Site1, 

           '1650' = Site2, 

           '1490' = Site3, 

           '1340' = Site4, 

           '1205' = Site5, 

           '1090' = Site6, 

           '1000' = Site7, 

           '880'  = Site8, 

           '175'  = Site9, 

           '560'  = Site10 

    ) 

  number_strings <- colnames(temps2) 

  # Target value 

  target_value <- elevation 

  # Convert string values to numeric 

  numbers <- as.numeric(number_strings) 

  # Calculate the absolute differences 

  differences <- abs(numbers - target_value) 

  # Find the index of the closest number 

  closest_index <- which.min(differences) 

  # Get the closest number 

  nearestSite <- as.character(numbers[closest_index]) 

   

  # Select relevant columns and compute daily statistics 

  day_values <- temps2 %>% 

    group_by(day = extract_day(Date)) %>% 



   

 

   24 of 31 

 

 

    summarise( 

      site_avg = mean(!!sym(nearestSite), na.rm = TRUE), 

      site_max = max(!!sym(nearestSite), na.rm = TRUE), 

      site_min = min(!!sym(nearestSite), na.rm = TRUE) 

    ) 

  day_values$day <- day_values$day + days(1) 

  # Apply lapse rate correction 

  day_values[, -which(names(day_values) == 'day')] <- lapply( 

    day_values[, -which(names(day_values) == 'day')], 

    lapse_rate_adjust 

  ) 

} else { 

  temps2 <- rename_columns(temps2) 

  # Clean data by removing values outside physical limits 

  day_values <- temps2 %>% 

    select(date) 

  day_values <- day_values %>% 

    rename(day = date) 

  temps2 <- temps2 %>% select(contains(c("Mean",'Min','Max'))) 

  temps2 <- temps2 %>% 

    mutate( 

      across(everything(), ~ case_when(.x > 50 ~ NA_real_, 

                                       .x < -30 ~ NA_real_, 

                                       TRUE ~ .x)) 

    ) 

  min_columns <- temps2 %>% 

    select(contains("Min")) 

  min_columns <- min_columns %>% 

    rowwise() %>% 

    mutate(min = mean(c_across(everything()),na.rm = TRUE)) 

   

  mean_columns <- temps2 %>% 

    select(contains("Mean")) 

  mean_columns <- mean_columns %>% 

    rowwise() %>% 

    mutate(mean = mean(c_across(everything()),na.rm = TRUE)) 

  max_columns <- temps2 %>% 

    select(contains("Max")) 

  max_columns <- max_columns %>% 

    rowwise() %>% 

    mutate(max = mean(c_across(everything()),na.rm = TRUE)) 

  day_values$site_min <- min_columns$min 

  day_values$site_avg <- mean_columns$mean 

  day_values$site_max <- max_columns$max 

} 

 

 

###########################################################################

##### 

# create datetime dataframe -----------------------------------------------

------- 

 

unit_period = period(1,'days') 

 

date <- seq(from = start_date, to = end_date, by = "days") 

 

dates_df  <- data.frame(date) 
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dates_df$JulianDayOfYear <- yday(dates_df$date) 

dates_df$Year <- year(dates_df$date) 

 

 

dates_df$DayOfYear <- paste(dates_df$JulianDayOfYear, dates_df$Year) 

 

###########################################################################

##### 

# create data frame from excel spreadsheet and merge with date data frame--

------- 

 

Excel_data <- read_excel(file_Path,sheet = 

sheet_name,skip=empty_rows,trim_ws = TRUE) 

 

Excel_data$DayOfYear <- paste(Excel_data$day, Excel_data$year) 

 

data_set = left_join(dates_df,Excel_data,by = join_by(x$DayOfYear == 

y$DayOfYear)) 

data_set <- setorder(data_set, date) 

data_set <- data_set %>% select(-year,-JulianDayOfYear,-day) 

###########################################################################

##### 

# Rename columns for consistency 

 

data_set <- rename_columns(data_set) 

# Filter data -------------------------------------------------------------

-------- 

 

Reliable_data <- data_set %>% 

  select(-DayOfYear,-date,-Year,-time,-Battery) 

 

# remove values outside physical limits (generous estimates [max 50 min -

30]) 

Reliable_data <- Reliable_data %>% 

  mutate( 

    across(everything(), ~ case_when(.x > 50 ~ NA_real_, 

                                     .x < -30 ~ NA_real_, 

                                     TRUE ~ .x)) 

  ) 

 

###########################################################################

##### 

data_set$BatteryFailure <- 0 

 

# data_set 

data_set <- data_set %>% 

  mutate(BatteryFailure = ifelse(Battery < 10, BatteryFailure + 1, 

BatteryFailure)) 

data_set <- data_set %>% 

  mutate(BatteryFailure = ifelse(Battery > 13.4, BatteryFailure + 1, 

BatteryFailure)) 

Reliable_data$BattFailed <- data_set$BatteryFailure 

Reliable_data <- Reliable_data %>% 

  mutate(BattFailed = ifelse(BattFailed >0, TRUE,FALSE)) 
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# remove max panel default failure values 

Reliable_data <- Reliable_data %>% 

  mutate(Max.panel= ifelse(Max.panel==35.44 & BattFailed==TRUE, 

NA,Max.panel) ) 

 

###########################################################################

##### 

# Average across different sensor readings 

# MIN 

min_columns <- Reliable_data %>% 

  select(contains("Min")) 

 

row_averages1 <- min_columns %>% 

  rowwise() %>% 

  mutate(Min = mean(c_across(),na.rm = TRUE)) 

 

Reliable_data$Min <- row_averages1$Min 

# MEAN 

mean_columns <- Reliable_data %>% 

  select(contains("Mean")) 

 

row_averages2 <- mean_columns %>% 

  rowwise() %>% 

  mutate(Mean = mean(c_across(),na.rm = TRUE)) 

 

Reliable_data$Mean <- row_averages2$Mean 

 

# MAX 

max_columns <- Reliable_data %>% 

  select(contains("Max")) 

 

row_averages3 <- max_columns %>% 

  rowwise() %>% 

  mutate(Max = mean(c_across(),na.rm = TRUE)) 

 

Reliable_data$Max <- row_averages3$Max 

Reliable_data$date <- data_set$date 

day_values <- day_values %>% 

  mutate(day = format(day, format = "%Y-%m-%d")) 

Reliable_data <- Reliable_data %>% 

  mutate(date = format(date, format = "%Y-%m-%d")) 

day_values <- day_values %>% 

  distinct(day, .keep_all = TRUE) 

 

###########################################################################

##### 

# compare primary and secondary station data 

stations_data_set = left_join(Reliable_data,day_values,by = c('date'='day')) 

cols = c('date','Min', 'site_min', 'Mean', 'site_avg', 'Max', 'site_max') 

stations_data_set <- stations_data_set %>% 

  select(all_of(cols)) 

 

###########################################################################

##### 

# MEAN 

 

stations_data_set <- stations_data_set %>% 
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  mutate(Mean_diff = stations_data_set$site_avg - stations_data_set$Mean) 

av_bias = sum(stations_data_set$Mean_diff,na.rm = 

TRUE)/length(stations_data_set$Mean) 

 

stations_data_set <- stations_data_set %>% 

  mutate(MeanBiasCorrection = stations_data_set$site_avg - av_bias) 

 

stations_data_set <- stations_data_set %>% 

  mutate(Mean_diff = stations_data_set$MeanBiasCorrection - 

stations_data_set$Mean) 

av_bias = sum(stations_data_set$Mean_diff,na.rm = 

TRUE)/length(stations_data_set$Mean) 

 

threshold_mean = max(stations_data_set$Mean_diff,na.rm=TRUE) 

 

mean_columns <- Reliable_data %>% 

  select(contains("Mean"),-Mean) 

 

mean_columns <- mean_columns %>% 

  mutate(across(everything(), ~ ifelse((.x > .x+threshold_mean | .x < .x-

threshold_mean), NA,.x))) 

 

row_averages4 <- mean_columns %>% 

  rowwise() %>% 

  mutate(Mean = mean(c_across(),na.rm = TRUE)) 

 

# MIN 

stations_data_set <- stations_data_set %>% 

  mutate(Min_diff = stations_data_set$site_min - stations_data_set$Min) 

min_bias = sum(stations_data_set$Min_diff,na.rm = 

TRUE)/length(stations_data_set$Min) 

 

stations_data_set <- stations_data_set %>% 

  mutate(MinBiasCorrection = stations_data_set$site_min - min_bias) 

 

stations_data_set <- stations_data_set %>% 

  mutate(Min_diff = stations_data_set$MinBiasCorrection - 

stations_data_set$Min) 

min_bias = sum(stations_data_set$Min_diff,na.rm = 

TRUE)/length(stations_data_set$Min) 

 

threshold_min = max(stations_data_set$Min_diff,na.rm=TRUE) 

 

min_columns <- Reliable_data %>% 

  select(contains("Min"),-Min) 

 

min_columns <- min_columns %>% 

  mutate(across(everything(), ~ ifelse((.x > .x+threshold_min | .x < .x-

threshold_min), NA,.x))) 

 

row_averages5 <- min_columns %>% 

  rowwise() %>% 

  mutate(Min = mean(c_across(),na.rm = TRUE)) 

 

# Max 

stations_data_set <- stations_data_set %>% 

  mutate(Max_diff = stations_data_set$site_max - stations_data_set$Max) 
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mx_bias = sum(stations_data_set$Max_diff,na.rm = 

TRUE)/length(stations_data_set$Max) 

 

stations_data_set <- stations_data_set %>% 

  mutate(MaxBiasCorrection = stations_data_set$site_max - mx_bias) 

 

stations_data_set <- stations_data_set %>% 

  mutate(Max_diff = stations_data_set$MaxBiasCorrection - 

stations_data_set$Max) 

mx_bias = sum(stations_data_set$Max_diff,na.rm = 

TRUE)/length(stations_data_set$Max) 

 

threshold_max = max(stations_data_set$Max_diff,na.rm=TRUE) 

 

max_columns <- Reliable_data %>% 

  select(contains("Max"),-Max) 

 

max_columns <- max_columns %>% 

  mutate(across(everything(), ~ ifelse((.x > .x+threshold_max| .x < .x-

threshold_max), NA,.x))) 

# max_columns 

row_averages6 <- max_columns %>% 

  rowwise() %>% 

  mutate(Max = mean(c_across(),na.rm = TRUE)) 

 

 

Reliable_data$Max_adjusted <- row_averages6$Max 

Reliable_data <- Reliable_data %>% 

  mutate( 

    across(Max_adjusted, ~ case_when(.x < Mean ~ Max, 

                                     TRUE ~ .x)) 

  ) 

Reliable_data$Min_adjusted <- row_averages5$Min 

Reliable_data <- Reliable_data %>% 

  mutate( 

    across(Min_adjusted, ~ case_when(.x > Mean ~ Min, 

                                     TRUE ~ .x)) 

  ) 

Reliable_data$Mean_adjusted <- row_averages4$Mean 

 

Reliable_data <- Reliable_data %>% 

  mutate( 

    across(Mean_adjusted, ~ case_when(.x > Max ~ Mean, 

                                      .x < Min ~ Mean, 

                                      TRUE ~ .x)) 

  ) 

 

 

 

###########################################################################

##### 

# Select data for outputs 

write_out1 <- Reliable_data %>% 

  select(date,Max_adjusted,Mean_adjusted,Min_adjusted,BattFailed) 

write_out1 <- write_out1 %>% 

  rename('Max' = Max_adjusted, 

         'Min' = Min_adjusted, 
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         'Mean' = Mean_adjusted) 

write_out2 <- write_out1 

write_out2$Max <- ifelse(is.na(Reliable_data$Max),  

                         stations_data_set$MaxBiasCorrection,  

                         Reliable_data$Max) 

write_out2$Mean <- ifelse(is.na(Reliable_data$Mean),  

                         stations_data_set$MeanBiasCorrection,  

                         Reliable_data$Mean) 

write_out2$Min <- ifelse(is.na(Reliable_data$Min),  

                          stations_data_set$MinBiasCorrection,  

                          Reliable_data$Min) 

 

# Write data to an Excel file with multiple sheets 

write_xlsx(list(SingleStationValues = write_out1,  

                SubstitutedValues = write_out2, 

                RawData = data_set), 

           output_path) 
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