Questions

1. What is the oxidation state of chlorine in each of the following substances?

$$\frac{K\underline{Cl}O_3}{A-1,\,0,\,+2} \frac{I\underline{Cl}}{B-1,\,+1,\,+2} \frac{C+5,\,-1,\,-1}{C+5,\,-1,\,-1} \frac{D+5,\,-1,\,+1}{D+5,\,-1,\,+1} \frac{E+5,\,+1,\,+2}{E+5,\,+1,\,+2}$$

- 2. In which reaction is hydrogen the oxidising agent?
 - A. $H_2 + Cl_2 \longrightarrow 2HCl$
 - B. $C_2H_4 + H_2 \longrightarrow C_2H_6$
 - C. $N_2 + 3H_2 \longrightarrow 2NH_3$
 - D. $2Na + H_2 \longrightarrow 2NaH$
 - E. $2H_2 + O_2 \longrightarrow 2H_2O$
- 3. Which compound contains two different elements with identical oxidation states?
 - A. HClO
- B. HClO₄
- C. $Mg(OH)_2$
- D. Na₂SO₄
- E. NH₄Cl

4. Which reaction is not an oxidation-reduction reaction?

A.
$$Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2$$

B.
$$2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$$

C.
$$S + O_2 \longrightarrow SO_2$$

D.
$$SO_2 + NO_2 \longrightarrow SO_3 + NO$$

E.
$$SO_3 + H_2O \longrightarrow H_2SO_4$$

5. Acidified potassium permanganate, KMnO₄, reacts with iron(II) ethanedioate, FeC₂O₄. The reactions taking place are shown.

$$MnO_4^- + 8H^+ + 5e^ Mn^{2^+} + 4H_2O$$

 Fe^{2^+} \longrightarrow $Fe^{3^+} + e^-$
 $C_2O_4^{2^-}$ \longrightarrow $2CO_2 + 2e^-$

Choose the amount in moles of FeC₂O₄ that react with **one** mole of KMnO₄.

- A. 0.60
- B. 1.67
- C. 2.00
- D. 2.50
- E. 5.00

_							4 - 1									2
6.	. Wh	at is th	ne pH	of a 20	0 mL 0	0.15 mo	ol L-1	HNO ₃ ?	1							
	A0	0.52		B. 0.52			C	0.82	D	. 0.8	2		E.	1.52		
7.	. Wh	at is th	ne OI	H conce	entration	n of a s	oluti	on havi	ng pH	I 4.2?	•					
A.	6.31	× 10 ⁻⁵		B. 1.58	3×10^{-5}		C. (6.31 × 1	0-10			D. 1.:	58 × 1	10-9	E. 1.	58×10^{-10}
8.	0.2	3 mol l	L-1 so	olutions	of each	of the	follo	owing co	onduc	t elec	etricity	. Whic	ch is t	he poo	orest co	onductor?
A.	HF			B. NH4	ıF		C.]	NaOH			D. H	COON	a	Е	. HCl	
9.	60. 0. Wh	0 mL o A. 0 B. 0 C. 0 D. 0 E. 0	of 0.1 0.150 0.040 0.0200 0.0200 0.0600 ms are	00 mol L-100 mol	L-1 NaCl NaCl -1 NaCl -1 NaCl -1 NaCl -1 NaCl -1 NaCl -1 Ca(N	OH? and 0.0 and 0.0 and 0.0 and 0.0 centrat	0200 0200 0600 0200 ions	mol L-mol L-mol L- mol L- of at lea	¹ NaC HCl HCl HCl HCl of 0.1	OH 5 mo 0 mo	ol L ⁻¹ in l L ⁻¹ N	n a solı				HCl with
	A.	Only II	[B. Both	I. Ca ²⁺ I and II	C.	II. (I. NO . Botl	h II and	l III	E.	I, II ar	nd III	
1	the	solutio	on is		with 0.4	485 mc	ol L-1	NaOH.	Read	ction	occurs					ded, and on below.
		H_2	C_2O_4	(aq) + 2	20H- (a	q) $-$	→	C_2O	4 ²⁻ (aq)) + 2	$H_2O(l)$					
	Wh	at is th	ne ma	ass of th	e oxalio	c acid i	n the	sample	? M(H_2C_2	$O_4) = 0$	90.0 g	mol ⁻¹			
	A.	0.547	g 'g	B. 0.65	54 g		C. (0.729 g		D. 0	.752 g		E.	0.856	g	
12	2. Wh 0.2	at is th 0 mol l	he pH L ⁻¹ H	I of a so	olution 1 55.0 mI	that res	sults :	from m ol L ⁻¹ C	ixing H₃CO	of 45 OH?	5.0 mL	of 0.1	0 mol	l L ⁻¹ H	INO3, :	50.0 mL of
	A.	0.40		B. 0.88	}	C. 1.0	1	D.	1.18		E. 1.5	52				
1.				ydrogen uce 18 g			s ign	ited and	l react	ts cor	mpletel	y to fo	rm w	ater. `	Which	mixture
	A. 2.	0 g H ₂	and 1	6.0 g O ₂		B. 2.0	g H ₂	and 18.	0 g O ₂		C. 2.0	g H ₂ aı	nd 32	$g O_2$		
	D.	4.0 g H	I ₂ and	16.0 g C	O_2		E. 4	4.0 g H ₂	and 18	3.0 g (O_2					

14. An unknown metal nitrate solution contains one of the metal cations below. Identify the cation based on the tests and observations below.

Test	Observation
Add 2 drops NaOH(aq)	• forms a white precipitate
Add excess NaOH(aq)	precipitate remains
Add H ₂ SO ₄ (aq) to a new sample	forms a colourless solution

A. Na⁺

B. Mg²⁺

C. Ba²⁺

D. Zn²⁺

E. $A1^{3+}$

15. Which combination of substances in aqueous solution will not produce a precipitate?

A. NaOH + $HClO_4$ B. K_2CO_3 + $CuSO_4$

C. $BaBr_2 + Na_2SO_4$

D. $ZnI_2 + KOH$ E. AgNO₃ + HCl

16. Phosphoric acid can be manufactured according to the following reaction:

$$Ca_3(PO_4)_2 + 3SiO_2 + 5C + 5O_2 + 3H_2O \longrightarrow 3CaSiO_3 + 5CO_2 + 2H_3PO_4$$

Reaction of equal masses of calcium phosphate ($M = 310 \text{ g mol}^{-1}$) and silica, SiO₂ ($M = 60.0 \text{ g mol}^{-1}$) with excess carbon, oxygen and water gives 1000 kg of phosphoric acid ($M=98.0 \text{ g mol}^{-1}$) Assuming 100% yield, what mass of calcium phosphate was used?

A. 610 kg

B. 800 kg

C. 920 kg

D. 1580 kg

E. 3160 kg

17. A sample of potassium oxide, K₂O, is dissolved in 250 mL of distilled water. 25.0 mL of this solution is titrated with 2.00 mol L⁻¹ sulfuric acid. 15.0 mL of the sulfuric acid is needed for complete neutralisation.

Which mass of potassium oxide was originally dissolved in 250 mL of distilled water?

$$M(K_2O) = 94.2 \text{ g mol}^{-1}$$

A. 2.83 g

B. 5.66 g C. 28.3 g D. 47.1 g E. 56.6 g

18. 25.00 mL of each of the following solutions is added to separate 20 g samples of solid MgCO₃. Assuming complete reaction, which solution will produce the largest volume of CO₂ at room temperature and pressure? $M(MgCO_3) = 84.3 \text{ g mol}^{-1}$

A. 1 mol L⁻¹ H₂SO₄ B. 2 mol L⁻¹ H₂SO₄ C. 2 mol L⁻¹ HNO₃

D. 2 mol L⁻¹ HCl

E. 3 mol L⁻¹ HCl

19. Choose the mass of $Sr(OH)_2.8H_2O$ (M = 265.76 g mol⁻¹) is needed to prepare 250.0 mL of solution in which $c(OH^-)$ is 0.100 mol L^{-1} .

A. 3.32 g

B.

6.64 g C. 9.97 g D. 13.3 g E. 26.6 g

20. Upon complete combustion, a 10.0 g sample of a compound containing only carbon, hydrogen and oxygen forms 23.98 g CO₂ and 4.91 g H₂O. What is the empirical formula of the compound?

A. CH₂O₂

B...C₂HO

C. C₃H₃O

D. $C_6H_3O_2$

E. C₆H₆O

21. Use the given information to calculate the mass of butane (C_4H_{10}) that releases 10,000 kJ of heat energy on combustion. $M(C_4H_{10}) = 58.0 \text{ g mol}^{-1}$ $\Delta_c H(\text{butane}) = -2877 \text{ kJ mol}^{-1}$

A. 3.48 g

B. 16.7 g

C. 172 g

D. 195 g

E. 202 g

22. Heating 2.00 mol of hydrogen and 3.00 mol of iodine in a 1.00 L sealed container at a fixed temperature results in the reaction below. The mixture of gases at equilibrium contains 2.40 mol of iodine.

$$H_2(g) + I_2(g) \approx 2HI(g)$$

Calculate the equilibrium constant, K_c .

A. 0.107

B. 0.357

C. 0.429

D. 2.33

E. 9.35

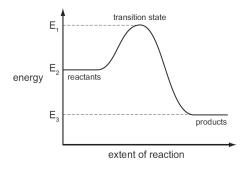
23. Which statements about the collision theory of reactions are correct?

I. Only collisions where molecules have the correct orientations lead to reactions.

II. Only collisions with an energy greater than a certain value lead to reactions.

III. Reactions occur faster at higher temperatures because the particles are moving faster and with more energy.

A. I only


B. II only

C. III only

D. II and III only

E. I, II and III

24. The reaction pathway diagram below illustrates the energies of the reactants, the products and the transition state of a reaction.

Which expression represents the activation energy of the forward reaction?

A. E₁- E₂

B. $E_1 - E_3$

C. $E_2 - E_1$

D. $E_2 - E_3$

E. E_3 - E_2

25. The reaction between sulfur dioxide and oxygen is reversible

$$2SO_2(g) + O_2(g) \rightleftharpoons SO_3(g)$$

$$\Delta_r H^{\circ} = -196 \text{ kJ mol}^{-1}$$

Which changes to the pressure and temperature favour the reverse reaction?

	pressure	temperature
A	Decrease	Increase
В	Decrease	Decrease
С	Increase	Increase
D	Increase	Decrease
Е	Constant	Increase

26. The reaction between sulfur dioxide and oxygen occurs according to the following equation.

$$2SO_2(g) + O_2(g) \cong SO_3(g)$$

$$\Delta_r H^{\circ} = -196 \text{ kJ mol}^{-1}$$

Which change in reaction conditions will **NOT** result in a higher equilibrium concentration of SO₃?

- A. adding a catalyst
- B. increasing the pressure
- C. adding more O₂
- D. adding more SO₃
- E. decreasing the temperature
- 27. Excess thionyl chloride, SOCl₂, can be removed from a reaction mixture by reacting it with water according to the following equation.

$$SOCl_2(l) + H_2O(l) \longrightarrow 2HCl(g) + SO_2(g)$$

Use the following data to calculate $\Delta_r H^o$ for this reaction.

	SOCl ₂ (l)	$H_2O(l)$	HCl(g)	$SO_2(g)$
∆ _f H° /kJ mol ⁻¹	-245.6	-285.8	-92.3	-296.8

$$D + 50.0$$

- 28. A student has an unknown organic substance with the molecular formula C₆H₁₂O Addition of acidified permanganate results in a colourless solution after 2 minutes stirring. Mixing a sample of the unknown with bromine water gives an orange solution. Which is the correct unknown?

 - A. hex-3-en-1-ol B. 3-methyl-pent-1-en-3-ol
- C. cyclohexanol

- D. cyclohexenol
- E. 3-methylhexan-2-ol
- 29. How many structural isomers are there with the formula C_6H_{14} ?
 - A. 4
- B. 5
- C. 6
- D. 7
- E. 8
- 30. A student heats 1-bromopentane in aqueous potassium hydroxide. The product is further heated in acidified potassium permanganate. This product is then mixed with aqueous ammonia at room temperature. Which is the most likely final product?
 - A pentan-1-amine
- B pentanoic acid
- C 1,2-diaminopentane

- D ammonium pentanoate
- E. 2-aminopentanoic acid

31. Which row correctly describes the reaction between propene and bromine, $Br_2(l)$?

	Type of reaction	Organic product
A	addition	CH ₃ CHBrCH ₂ Br
В	addition	CH ₃ CH ₂ CH ₂ Br
С	addition	CH₃CHBrCH₃
D	substitution	CH ₃ CH ₂ CH ₂ Br
Е	substitution	CH ₃ CHBrCH ₂ Br

32. Hydrogen bromide can be added to T to give compound U. Compound U can be hydrolysed to compound V.

Five students, V, W, X, Y and Z, make the following statements.

- V. Step 1 is an addition reaction
- W. Step 1 is an elimination reaction
- X. Step 2 is a substitution reaction
- Y. All the atoms in a molecule of compound T lie in the same plane
- Z. Compound T has *cis-trans* isomers

Which two students are correct?

A. V and X

- B. V and Z
- C. X and Y
- D. X and Z
- E. Y and Z

33. Structural isomerism and stereoisomerism should be considered in answering this question. Compound J is reacted with KOH dissolved in ethanol. Three isomeric alkenes with molecular formula C₄H₈ are formed.

What is compound J?

$$A$$
 CH₃CH₂CH₂CH₂Br

$$\begin{array}{ccc} & \text{CH}_3\text{CHCH}_2\text{CH}_3 \\ \text{B} & \text{Br} \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{C} \\ \text{CH}_3 \text{CHCH}_2 \text{Br} \end{array}$$

$$\begin{array}{c} \text{CH}_3\\ \text{CH}_3\text{C}-\text{Br}\\ \end{array}$$

$$\begin{array}{c|c} H_2C \longrightarrow CH_2 \\ & \downarrow \\ H_2C \longrightarrow C \longrightarrow Br \\ E & H \end{array}$$

34. Considering **only** structural isomers, what is the number of alcohols of each type with the formula C₅H₁₂O?

	Primary	Secondary	Tertiary
Α	3	3	1
В	3	3	2
С	4	2	2
D	4	3	1
Е	4	3	2

35. Histidine is an amino acid.

What are the approximate bond angles 1, 2 and 3?

	1	2	3
A	109.5	107	90
В	109.5	107	109.5
С	120	107	109.5
D	120	120	90
Е	120	120	109.5

	CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃				CH ₃ CH ₂ CH ₂ CH(CH ₃) CH ₃						
The tw	The two compounds are										
	A.	Identio	cal	B. Structural isomers			C. Geometric isomers				
		D. cis-	<i>-trans</i> isom	iers	E.	Stereoison	ners				
37. Lewis dot structures can be used to determine whether a compound is polar due to having a molecular dipole. Which of the following compounds does NOT have a molecular dipole?									_		
A. O ₃		B.	SeO_3	C.	XeO_3		D.	NH ₃	Ι	E. PCl ₃	3
	38. Which ion has both more electrons than protons and more protons than neutrons? $[H = {}_{1}^{1}H; D = {}_{1}^{2}H; O = {}_{8}^{16}O]$										
A. H ⁺		•	-	C. H ₃ O ⁺	D.	OD^-	E.	OH ⁻			
39. Which	spe	cies has	s the smalle	est number o	of electr	ons?					
A. B ³⁺		В.	Be^{2+}	C.	Li ⁺	D. H ⁻		Е.	He ⁺		
40. Which compound is non-polar (no net dipole moment) despite having polar covalent bonds?											
	A.	CO_2	B. H ₂ C	C.	HCN	D. N ₂		E.	NaCl		

36. Which of the statements about the following two compounds is correct?