New Zealand Chemistry Olympiad Trust
 Training Group Selection Examination

Monday 25 September 2017

TIME ALLOWED: 120 minutes

Answer ALL questions on this examination booklet.

Calculators may be used.

A periodic table with atomic masses is also provided.

NOTE - This paper is in two sections. Complete both sections.

Section A Multichoice: Total marks 50/100

There are 25 questions. EACH answer is worth 2 marks
Answer ALL questions - circle the letter of the correct answer.

Section B Long Answers: Total marks 50/100

The mark value for each question is shown.
All answers must be written in the space provided.
In questions involving numerical calculations show all reasoning and work.

STUDENT'S NAME: \qquad

STUDENT'S EMAIL: \qquad

SCHOOL: \qquad

Section A Multichoice	Section B Long Answers					Total $/ 100$	
	$12 \times 25=50$	$/ 7$	$/ 10$	$/ 18$	$/ 8$	$/ 7$	

SECTION A - Multichoice

For each question circle the correct answer.

Question One

What is the concentration of KI in a solution that is $5.00 \% \mathrm{KI}$ by mass and has a density of 1.038 $\mathrm{g} / \mathrm{cm}^{3}$? $M(\mathrm{KI})=166 \mathrm{~g} \mathrm{~mol}^{-1}$
A. $\quad 0.0301 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $0.313 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $0.500 \mathrm{~mol} \mathrm{~L}^{-1}$
D. $0.625 \mathrm{~mol} \mathrm{~L}^{-1}$

Question Two

A compound with the formula $\mathrm{X}_{2} \mathrm{O}_{5}$ contains 34.8% oxygen by mass. Identify element X .
A. arsenic
B. carbon
C. phosphorous
D. samarium

Question Three

Which is the composition of the solution that results from mixing 40.0 mL of $0.200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ with $60.0 \mathrm{~mL}^{2} 0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$?
A. $0.150 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCl}$
B. $0.0200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCl}$ and $0.0200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
C. $0.0200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCl}$ and $0.0600 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
D. $0.0600 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCl}$ and $0.0200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$

Question Four

An unknown anion in solution can be identified by adding Ag^{+}and Ba^{2+} ions to separate samples. Which anion would produce the results listed for it? (+ indicates precipitate observed; - indicates no precipitate): $\mathrm{Ag}^{+} \mathrm{Ba}^{2+}$
A. carbonate +-
B. hydroxide -+
C. iodide +-
D. nitrate + +

Question Five

The preparation of bromobenzene can be represented by the equation shown.

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}
$$

A student reacted 20.0 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ with 0.310 mol of bromine. If 28.0 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ was obtained, what was the percentage yield?
A. 31.5
B. 40.3
C. 57.6
D. 69.7

Question Six

Which of the following species has only one nonbonding pair of electrons on the central atom?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{CO}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. CH_{4}

Question Seven

The iodate ion $\left(\mathrm{IO}_{3}^{-}\right)$can oxidize Fe^{2+} to Fe^{3+} in acid solution. IO_{3}^{-}is reduced to iodide (1^{-}) in this reaction. Which is the amount in moles of Fe^{2+} that can be oxidized by 1 mole of $\mathrm{IO}_{3}{ }^{-}$?
A. 3
B. 4
C. 5
D. 6

Question Eight

Flutamide is an important organic compound containing three fluorine atoms in each molecule. It is used in the treatment of prostate cancer. An analytical chemist extracted flutamide from a commercial tablet weighing 203.21 mg leaving a residue (containing non-medicinal ingredients) that weighed 128.23 mg . Elemental analysis of the extracted flutamide revealed the presence of 15.47 mg of fluorine. What is the molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of flutamide?
A. 232.8
B. 254.5
C. 276.3
D. 286.9

Question Nine

Consider the following reactions at equilibrium:
I) C (graphite) $+\mathrm{S}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CS}_{2}(\mathrm{~g})$
II) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}($ graphite $) \leftrightarrows 2 \mathrm{CO}(\mathrm{g})$
III) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~S}_{2}(\mathrm{~g}) \quad \leftrightarrows \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
IV) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \leftrightarrows \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

For which pair would there be NO change in compositon when the pressure is increased by reducing the volume, at constant temperature.
A. I and II
B. I and III
C. I and IV
D. II and III

Question Ten

Use the thermochemical data given to calculate $\Delta_{f} H^{\circ}$ for $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ in $\mathrm{kJ} \mathrm{mol}^{-1}$.

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) & \Delta H^{\circ}=+180.5 \mathrm{~kJ} \\
2 \mathrm{NO}^{(\mathrm{g})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta H^{\circ}=-114.1 \mathrm{~kJ} \\
4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) & \Delta H^{\circ}=-110.2 \mathrm{~kJ}
\end{array}
$$

A. -332.8
B. -43.8
C. 11.3
D. 22 .

Question Eleven

Consider the energy profile diagram for a chemical reaction

Which of the following statements must be correct?
A. The activation energy of the forward reaction is $120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. The activation energy of the reverse reaction is $140 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. The energy change (ΔE) of the forward reaction is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. The forward reaction is spontaneous

Question Twelve

What is the oxidation number of vanadium in ammonium orthovanadate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{VO}_{4}$?
A. +2
B. +3
C. +4
D. +5

Question Thirteen

When the equation

$$
\mathrm{ClO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$ is balanced, what is the ratio of the stoichiometric coefficient of ClO_{2} to that of ClO_{3}^{-}?

A. $1: 1$
B. $2: 1$
C. $3: 1$
D. $3: 2$

Question Thirteen

What is the formula of the most stable oxide of francium, Fr , an element in Group 1 of the periodic table
A. $\mathrm{Fr}_{2} \mathrm{O}$
B. FrO
C. $\mathrm{Fr}_{2} \mathrm{O}_{3}$
D. FrO_{2}

Question Fourteen

Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ can decompose explosively when heated to give the products shown below.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

What are the changes in the oxidation numbers of the two nitrogen atoms in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
A. $-2,-4$
B. $+2,+6$
C. $+4,-6$
D. $+4,-4$

Question Fifteen

What is the geometry of the $\mathrm{ClO}_{3}{ }^{-}$anion?
A. Trigonal planar
B. Trigonal pyramidal
C. bent
D. Tetrahedral

Question Sixteen

How many structural (constitutional) isomers are possible for $\mathrm{C}_{6} \mathrm{H}_{14}$?
A. 2
B. 3
C. 4
D. 5

Question Eighteen

How many geometric isomers are possible for $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$?
A. 0
B. 2
C. 3
D. 4

Question Nineteen

Which isomer of $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ forms three isomeric alkenes on dehydration?
A. butan-1-ol
B. butan-2-ol
C. 2-methylpropan-1-ol
D. 2-methylpropan-2-ol

Question Twenty

Quinaldine red is a useful acid-base indicator which is red in solutions of pH higher than 3.5, but colourless below pH 1.5 . Which of the following solutions would turn red if a few drops of quinaldine red were added?
(i) $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
(ii) $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{3}$
(iii) $0.0005 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}$
A. (i) and (ii) only
B. (i) and (iii) only
C. (ii) and (iii) only
D. (ii) only

Question Twenty One

Which is the conjugate acid of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
D. $\mathrm{PO}_{4}{ }^{3-}$

Question Twenty Two

Element \mathbf{X}, a grey solid, reacts with element \mathbf{Z}, a colourless gas, to form a compound in which there are twice as many atoms of \mathbf{X} as there are of \mathbf{Z}. Which of the following statements about the ground-state electron configurations of these atoms is most likely to be true?
A. $\quad \mathbf{X}$ has one valence electron and \mathbf{Z} has six.
B. $\quad \mathbf{X}$ has one valence electron and \mathbf{Z} has five.
C. \mathbf{X} has two valence electrons and \mathbf{Z} has one.
D. \mathbf{X} has two valence electrons and \mathbf{Z} has five.

Question Twenty Three

What is the pH of a solution made by mixing 15 mL of $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Ca}(\mathrm{OH})_{2}$ with 12 mL of $0.15 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$?
A. 1.35
B. 12.65
C. 12.35
D. 11.08

Question Twenty Four

Nitrous acid, HNO_{2}, is a weak monoprotic acid. It can be concluded from this that nitrite ion, $\mathrm{NO}_{2}{ }^{-}$is
A. unreactive towards acids
B. a strong base
C. a stronger base than hydroxide ion, OH^{-}
D. a weak base

Question Twenty Five

At $50^{\circ} \mathrm{C} K_{w}$ is equal to 5.5.x. 10^{-14}. What is the pH of a neutral aqueous solution at $50^{\circ} \mathrm{C}$?
A. 7.00
B. 13.26
C. 2.3×10^{-7}
D. 6.63

SECTION B - Long Answers

QUESTION ONE (7 marks)

The percentage purity of a commercial sample of potassium nitrite can be established by titration. The determination involves reaction of a nitrite solution with excess standard acidified cerium(IV) sulfate followed by titration of the excess cerium(IV) sulfate with a standard iron(II) solution.

$$
\begin{aligned}
& \left.\mathrm{Ce}^{4+}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{Ce}^{3+}+\mathrm{NO}_{3}^{-} \text {(not balanced }\right) \\
& \mathrm{Ce}^{4+}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+}
\end{aligned}
$$

0.4911 g of impure potassium nitrite is dissolved in water and made up to 100 mL .10 .00 mL of this solution is added to 25.00 mL of an acidified $0.1105 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of cerium(IV) sulfate. It is found that 16.24 mL of $0.1007 \mathrm{~mol} \mathrm{~L}^{-1}$ iron(II) ammonium sulfate is required to consume the excess cerium(IV) sulfate. Calculate the percentage purity of the potassium nitrite sample.

QUESTION TWO (10 marks)

a) Nitric oxide (NO) can be formed by the action of dilute nitric acid on copper. Commercially, it is prepared by reacting ammonia with O_{2} at about $850^{\circ} \mathrm{C}$ in the presence of a catalyst (to give NO and water).
(i) Write a balanced equation for the reaction.
(ii) Nitric oxide (NO) can be further reacted with O_{2} give nitrogen dioxide. Write a balanced equation for the reaction.
b) The reaction in (a)(ii) is believed to involve two steps. The first step is a reaction in which two molecules of NO react to form an unstable oxide of nitrogen, $\mathrm{N}_{2} \mathrm{O}_{2}$. Once the system is at equilibrium $\mathrm{N}_{2} \mathrm{O}_{2}$ reacts with O_{2} in a second step to form nitrogen dioxide.

Overall the reaction is exothermic and in the commercial process it is cooled to $25^{\circ} \mathrm{C}$ because the yield of NO_{2} decreases with increasing temperature.

Explain why the yield of NO_{2} decreases with increasing temperature.

Draw the Lewis structures of $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \mathrm{O}_{2}$. Show the shapes of these molecules and include the bond angles around the inner atoms.
d) Nitrogen dioxide, NO_{2}, is an acidic oxide that reacts with water to form nitric acid, HNO_{3}. Nitric oxide, NO, is also produced in the reaction and recycled in the process.
(i) Write balanced half equations for the reaction of NO_{2} with water. Clearly show the oxidation number of each nitrogen atom in the equation and then indicate whether the half reaction is an oxidation or a reduction process.
(ii) Write the overall balanced equation

QUESTION THREE (18 marks)

a) (3 marks) Draw the organic products of the following reaction and clearly identify which is the major product.
$\mathrm{HBr}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3} \rightarrow$
b) The flow diagram below shows some reactions involving organic substances starting with the unbranched compound A which has geometric isomers.

In the table on the next page
(i) draw the structures of all the organic products and name them.
(ii) identify the reagents (by name or formula) that can be used to carry out each of these reactions.

Compound A	Compound B
Name:	Name:
Compound C	Compound D
Name:	
Compound E	Name:
Reagent L	Reagpound F
Name:	

QUESTION FOUR (8 marks)

Methyl orange can be used as an acid-base indicator. It is pink in solutions with a pH lower than 3 and yellow in solutions with a pH higher than 4.
Four beakers are known to contain one each of:

- $\quad 0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
- $\quad 0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
- distilled water
- $\quad 0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$
(a) Complete the following table.

	pH	Colour of methyl orange
$0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$		
$0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$		
distilled water		
$0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$		

(b) Using only the methyl orange indicator, additional water, test tubes and a measuring cylinder, discuss how a student could identify each of the four solutions.

QUESTION FIVE (7 marks)

To launch the space shuttle, two propulsion systems are used. Most of the thrust for the first two minutes of flight comes from the two reusable solid rocket boosters. The solid rocket boosters use a mixture of aluminium powder and ammonium perchlorate, $\mathrm{NH}_{4} \mathrm{ClO}_{4}$, together with an iron oxide catalyst.

The external tank is filled with liquid hydrogen and liquid oxygen which react to form water.
The enthalpy of reaction $\left(\Delta_{r} H\right)$ can be calculated from standard enthalpies of formation as shown below.

$$
\Delta_{r} H^{0}=\sum \Delta_{f} H_{\text {products }}-\sum \Delta_{f} H_{\text {Reactants }}
$$

The reaction that takes place during the combustion of the solid rocket booster fuel has been summarized as:

$$
10 \mathrm{Al}(s)+6 \mathrm{NH}_{4} \mathrm{ClO}_{4}(s) \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}(s)+2 \mathrm{AlCl}_{3}(s)+12 \mathrm{H}_{2} \mathrm{O}(I)+3 \mathrm{~N}_{2}(g)
$$

a) (3 marks) Use the enthalpies of formation $\left(\Delta_{f} H\right)$, to calculate the enthalpy of reaction at 298 K for this reaction. Note that $\Delta_{f} H$ for an element in its standard state is $0.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$

	$\mathrm{NH}_{4} \mathrm{ClO}_{4}(s)$	$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	$\mathrm{AlCl}_{3}(s)$	$\mathrm{H}_{2} \mathrm{O}(/)$
$\Delta_{\mathrm{f}} \mathrm{H}^{2} / \mathrm{kJ} \mathrm{mol}^{-1}$	-295.3	-1675.7	-704.2	-285.8

b) (4 marks) 450 tonnes ($4.50 \times 10^{5} \mathrm{~kg}$) of solid propellant are used in the solid rocket boosters in total, and that aluminium is the limiting reagent present at 16% in the mixture, calculate the energy released when this is reacted according to the above equation.

