New Zealand Chemistry Olympiad Trust
Training Group Selection Examination

Monday 31 October 2016

TIME ALLOWED: 120 minutes
Answer ALL questions on this examination booklet.
Calculators may be used.
A periodic table with atomic masses is also provided.

NOTE - This paper is in two sections. Complete both sections.

Section A Multichoice: Total marks 50/100

There are $\mathbf{2 5}$ questions. EACH answer is worth $\mathbf{2}$ marks
Answer ALL questions - circle the letter of the correct answer.

Section B Long Answers: Total marks 50/100

The mark value for each question is shown.
All answers must be written in the space provided.
In questions involving numerical calculations show all reasoning and work.

STUDENT'S NAME:

\qquad
STUDENT'S EMAIL: \qquad

SCHOOL: \qquad

	Section A Multichoice	Section B Long Answers						Total /100
	/2 $\times 25=50$	/9	/6	/10	/9	/8	/8	
Mark								

SECTION A - Multichoice

For each question circle the letter of the correct answer.

Question 1

What is the oxidant (oxidising agent) in the reaction for which the equation is shown below?

$$
2 \mathrm{HAsO}_{2}(\mathrm{aq})+3 \mathrm{Sn}^{2+}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \text { 国 } \rightarrow 2 \mathrm{As}(\mathrm{~s})+3 \mathrm{Sn}^{4+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. HAsO_{2}
B. Sn^{2+}
C. H^{+}
D. Sn^{4+}
E. $\quad \mathrm{H}_{2} \mathrm{O}$

Question 2

In which compound does manganese have an oxidation number of +3 ?
A. KMnO_{4}
B. $\mathrm{K}_{2}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
C. $\mathrm{K}_{5}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
D. MnSO_{4}
E. $\mathrm{CsMn}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

Question 3

0.0005 moles of metal chloride were dissolved in water. 60.0 mL of $0.025 \mathrm{~mol} \mathrm{~L}^{-1}$ silver nitrate solution were required to complete precipitation of silver chloride from the solution of the metal chloride. Choose the formula of the metal chloride that is consistent with these results.
A. MCl
B. $\mathrm{M}_{2} \mathrm{Cl}$
C. MCl_{2}
D. MCl_{3}
E. $\mathrm{M}_{2} \mathrm{Cl}_{3}$

Question 4

A sample has a mass of 54 mg and contains 3.01×10^{20} molecules of SF_{n}. What is the value of n ?
A. 1
B. 2
C. 4
D. 6
E. 8

Question 5

What is the Na^{+}ion concentration in the solution formed by mixing 20 mL of $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution with 50 mL of $0.30 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{3} \mathrm{PO}_{4}$ solution?
A. $0.09 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $0.15 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $0.24 \mathrm{~mol} \mathrm{~L}^{-1}$
D. $0.48 \mathrm{~mol} \mathrm{~L}^{-1}$
E. $0.70 \mathrm{~mol} \mathrm{~L}^{-1}$

Question 6

Which species has the same shape as the $\mathrm{NO}_{3}{ }^{-}$ion?
A. SO_{3}
B. $\mathrm{SO}_{3}{ }^{2-}$
C. NH_{3}
D. ClF_{3}
E. ClO_{3}^{-}

Question 7

Consider the following reaction and the associated value for $\Delta_{r} H^{\circ}$:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HCl}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} H^{\circ}=-92.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which statement about this information is incorrect?
A. $\quad \Delta_{\mathrm{r}} H^{\circ}$ will be $-92.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ if the HCl is produced as a liquid.
B. The four HCl bonds are stronger than the four bonds in $2 \mathrm{H}_{2}$ and $2 \mathrm{Cl}_{2}$.
C. If the equation is reversed, $\Delta_{\mathrm{r}} H^{\circ}$ equals $+92.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
D. 23.1 kJ of heat will be evolved when 1 mol of $\mathrm{HCl}(\mathrm{g})$ is produced.
E. The reactants are in their standard states.

Question 8

In which reaction will an increase in the volume of the container favour the formation of products?
A. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
C. $\quad \mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
D. $\quad 3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
E. $\quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Question 9

Which pair of changes describes the effect of a catalyst on a chemical reaction?

	Activation energy	Enthalpy change of reaction
A	Decreased	Decreased
B	Decreased	No change
C	Decreased	Increased
D	No change	Decreased
E	Increased	No change

Question 10

The average bond enthalpy (bond energy) of a $\mathrm{C}-\mathrm{F}$ bond is $485 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
For which of the following processes is $\Delta_{\mathrm{r}} \mathrm{H}$ approximately $+1940 \mathrm{~kJ} \mathrm{~mol}^{-1}$?
A. $\quad \mathrm{CF}_{4}(I) \rightarrow \mathrm{C}(s)+2 \mathrm{~F}_{2}(g)$
B. $\quad \mathrm{CF}_{4}(g) \rightarrow \mathrm{C}(s)+2 \mathrm{~F}_{2}(g)$
C. $\quad \mathrm{CF}_{4}(g) \rightarrow \mathrm{C}(g)+2 \mathrm{~F}_{2}(g)$
D. $\quad \mathrm{CF}_{4}(g) \rightarrow \mathrm{C}(s)+4 \mathrm{~F}(g)$
E. $\quad \mathrm{CF}_{4}(g) \rightarrow \mathrm{C}(g)+4 \mathrm{~F}(g)$

Question 11

The graph below shows student data from two trials in which he studied the rate of a particular reaction, changing just one of the reaction conditions in the second trial.

Which one of the following statements MUST be INCORRECT?
A. Exactly the same amounts of reactants were used in the two experiments
B. The reaction temperature was higher in Experiment A than in Experiment B
C. The mass of one of the products was being measured in the two experiments
D. The final rate of reaction was greater in experiment A than in Experiment B
E. The initial rate of reaction was greater in Experiment A than in Experiment B

Question 12

A lemon-flavoured drink contains citric acid as the only acidic component. 10.00 mL of the drink is diluted with 15.00 mL of distilled water and titrated with NaOH solution using phenolphthalein as indicator. Under these conditions citric acid behaves as a diprotic (or dibasic) acid.
25.00 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide solution is used to reach the endpoint of the titration. Which is the concentration of the citric acid in the drink?
A. $\quad 0.100 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $\quad 0.125 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $\quad 0.200 \mathrm{~mol} \mathrm{~L}^{-1}$
D. $\quad 0.250 \mathrm{~mol} \mathrm{~L}^{-1}$
E. $\quad 0.500 \mathrm{~mol} \mathrm{~L}^{-1}$

Question 13

Lattices of ionic compounds are more stable if the ions are small and highly-charged and combined in a simple 1:1. On the basis of this information, choose the pair of ions that are likely to form crystals with the highest melting (or decomposition) temperature.
A. Li, O
B. Ag, O
C. Li, F
D. Mg, F
E. $\quad \mathrm{Mg}, \mathrm{O}$

Question 14.

The following compound is used as an additive in gasoline to improve its octane value.

Which of the following is a correct IUPAC name for this compound?
A. 2,2,4-trimethylpent-1-ene
B. 2,2,4-trimethylpent-2-ene
C. 2,2,4-trimethylpent-5-ene
D. 2,4,4-trimethylpent-1-ene
E. 2,4,4-trimethylpent-2-ene

Question 15

Which molecular formula could NOT represent a compound containing a hydroxyl (-OH) group?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4} \mathrm{O}$
C. $\mathrm{CH}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$
E. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$

Question 16

Aspartame has the structure given below. This compound is used as a sweetener in diet drink.

Choose the number of carbon atoms in one molecule of aspartame.
A. 12
B. 13
C. 14
D. 15
E. 16

Question 17

A substance melts at $681^{\circ} \mathrm{C}$ and conducts electricity when molten but not when solid. Choose the most likely type of attractive forces between the particles of this substance.
A. Ionic bonding
B. Metallic bonding
C. Dipole-dipole interactions
D. Covalent bonding
E. Intermolecular forces

Question 18

The pH of an aqueous solution is 6.0 at $50^{\circ} \mathrm{C}$. Which is the hydroxide ion concentration in $\mathrm{mol} \mathrm{L}^{-1}$? ($K_{w}=5.5 \times 10^{-14}$ at this temperature)
A. $\quad 1.0 \times 10^{-6}$
B. 2.3×10^{-7}
C. 1.0×10^{-8}
D. 5.5×10^{-8}
E. $\quad 7.8 \times 10^{-8}$

Question 19

An equal volume of $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ is added to each of the following solutions.
In which case(s) does the pH of the solution decrease?

1. $\mathrm{H}_{2} \mathrm{O}$
2. $0.25 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{CO}_{3}$
3. $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
4. $0.6 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KOH}$
A. $\quad 1,2$ and 3 only
B. $\quad 1$ and 2 only
C. 1 and 3 only
D. 2 and 4 only
E. 4 only

Question 20

Choose the conjugate acid of glycine (aminoethanoic acid).
A. $\quad \mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
C. $\mathrm{H}_{3} \mathrm{~N}^{+}-\mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2}{ }^{-}$
E. $\quad \mathrm{H}_{3} \mathrm{~N}^{+}-\mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$

Question 21

The diagram shows the cross section of a burette that is partially filled with a solution. Which is the burette reading?
A. 1.20 mL
B. 1.26 mL
C. 2.70 mL
D. 2.74 mL
E. 2.80 mL

Question 22

Which steps in the formation of $\mathrm{NaF}(\mathrm{s})$ are exothermic?
I. $\quad \mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
II. $\quad \mathrm{F}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{F}^{-}(\mathrm{g})$
III. $\quad \mathrm{Na}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \rightarrow \mathrm{NaF}(\mathrm{s})$
A. I only
B. II only
C. III only
D. I and III only
E. II and III only

Question 23

Which one of the following substances has one unpaired electron in its Lewis structure?
A. NH_{3}
B. $\mathrm{N} \equiv \mathrm{N}$
C. $\mathrm{N}=\mathrm{O}$
D. $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$
E. $\mathrm{H}-\mathrm{O}-\mathrm{N}$

Questions 24

Which one of the following reactions is NOT a redox reaction?
A. $\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HBr}+\mathrm{HBrO}$
B. $\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
C. $\mathrm{Na}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{3} \mathrm{AsO}_{4}$
D. $\mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaIO}_{3}+5 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$
E. $\quad 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Question 25

A colourless aqueous solution contains a single ionic compound. Use the following experimental information to deduce the identity of the compound.

When a small amount of dilute NaOH solution is added to the solution, a precipitate forms. This precipitate dissolves when excess NaOH is added.

Addition of AgNO_{3} (silver nitrate) to another sample of the original solution gives a white precipitate.
A. $\quad \mathrm{AlCl}_{3}$
B. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
C. CuSO_{4}
D. $\quad \mathrm{Fel}_{2}$
E. $\quad \mathrm{PbSO}_{4}$

SECTION B - Long Answers

QUESTION ONE (9 marks)

A compound contains only C, H, and N .
Combustion of 0.125 g of the compound produces 0.172 g of $\mathrm{H}_{2} \mathrm{O}$ and $0.279 \mathrm{~g} ~ o f ~ C O_{2}$.
a) Calculate the mass of H and C in 0.125 g of the compound. (2 marks)

1 mark each correct mass

Answer $9.56 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ or 0.0191 g and $6.34 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}$ or 0.0761 g
b) Show that the empirical formula of this compound is $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$. (2 marks)

1 mark for mass of N and 1 mark for showing calculation of EF

Answer -0.0761 g C= 60.9\%; H 0.0191 g H or 15.3\%.
Hence 0.0298 g N or 23.8\%. Empirical formula $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$
c) Assume the empirical formula of the compound is also the molecular formula. Draw structures for the four different isomers that are possible for a compound with this formula. (2 marks)

½ mark each correct structure

Propan-1-amine, propan-2-amine, ethyl methyl amine, trimethyl amine
d) The boiling point of molecular substances depends on the strength of attractive forces between the molecules. These depend on the polarity and also on the size and the shape of the molecule. When considering isomeric compounds, one type of intermolecular attractive force is stronger for linear molecules than for branched ones because in linear molecules, the surface area over which the interaction can occur is larger.
Electronegativity: $\mathrm{C}=2.6 ; \mathrm{N}=3.0 ; \mathrm{O}=3.4 ; \mathrm{H}=2.2$

The four isomers in part c) have boiling points that range from $3{ }^{\circ} \mathrm{C}$ to $48^{\circ} \mathrm{C}$. The Identify the isomers that have the lowest and highest boiling points. Explain your answers in terms of the intermolecular forces. (3 marks)

The presence of an $\underline{\mathrm{N}-\mathrm{H} \text { bond involves atoms with the greatest difference in electronegativity in }}$ these molecules ie the most polar bond (and possibility of hydrogen bonding between the molecules.

On its own this would result in stronger intermolecular forces and therefore a higher BP
The trimethyl amine is a branched molecule with no $\mathrm{N}-\mathrm{H}$ bond. In addition its shape is branched and the molecules cannot pack as closely together. This also reduces the strength of intermolecular forces and means trimethyl amine will have the lowest BP.

The molecule with the highest BP is propan-1-amine as it has two $\mathrm{N}-\mathrm{H}$ bonds and also is not a branched molecule.

1 mark for correct molecule with highest BP and 1 mark for lowest BP and 1 for correct discussion

QUESTION TWO (6 marks)

a) (2 marks)The standard enthalpy change for the reaction in which one mole of CO_{2} is formed from its elements is $-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The standard enthalpy change for the combustion of one mole of CO is $-283 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

For each of the reactions above, complete the diagram by writing the reactants of the balanced equation for the reaction on one line and the product on a different line.

Show all states.

2 marks all lines correct $1 / 2$ mark 1 line correct but 1.5 marks total if correct species but not balanced if totally reversed (top to bottom) give 1 mark
enthalpy

b) (2 marks)Use the information above to calculate the enthalpy change for formation of one mole of CO from its elements. Show how you arrived at your answer.

2 marks including correct unit and negative sign -
d) (2 marks) Iron is prepared from $\mathrm{Fe}_{2} \mathrm{O}_{3}$ by reaction with CO as shown in the equation given below.
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta_{r} H^{\circ}=-22 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Calculate ΔH for the reaction that produces 100 g iron.

QUESTION THREE (10 marks)

Part A (5 marks)

This question is concerned with solutions of the reactants and the product of the reaction given below:

$$
\mathrm{NH}_{3}(a q)+\mathrm{HNO}_{3}(a q) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(a q)
$$

a) As shown below, $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}are present in all of these solutions. Complete the table by firstly giving, for each solution, formulae for any other species (molecules or ions excluding $\mathrm{H}_{2} \mathrm{O}$) that are present. These species may arise either by dissolving or by reaction with water. Then identify species which fit descriptions given in the column at the left.
$1 / 2$ mark each correct box plus $1 / 2$ for part (b)

	NH_{3}	HNO_{3}	$\mathrm{NH}_{4} \mathrm{NO}_{3}$
All species in each solution (not $\mathrm{H}_{2} \mathrm{O}$)	$\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}	$\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}	$\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
Species present in equal concentration			
Species in lowest concentration			

b) Circle the solute in the solution with the lowest conductivity. $\quad \mathrm{NH}_{3} \quad \mathrm{HNO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$

Part B (5 marks)

Write net equations for the reaction of each of the combinations of reactants below. Use appropriate ionic and molecular formulae, omitting any ions or molecules that do not take part in the reaction. You need not balance the equations. All reactions occur in aqueous solution unless otherwise indicated.

1 mark each eqn correct.
1/2 mark if $\mathrm{Zn}(\mathrm{OH})_{2}$ for answer (iii) $1 / 2$ mark if only 1 product in (i), (ii) or (v)
(i) Solutions of magnesium sulfate and barium hydroxide are mixed.

$$
\mathrm{MgSO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{BaSO}_{4}
$$

(ii) Water is added to magnesium nitride (an acid base reaction).

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NH}_{3}
$$

(iii) Excess concentrated sodium hydroxide is added to a solution of zinc nitrate.

$$
\mathrm{Zn}^{2+}+4 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-} \quad \mathrm{OR} \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}
$$

(iv) Excess concentrated ammonia is added to aqueous copper(II) nitrate.

$$
\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}
$$

(v) Excess carbon dioxide is bubbled through a solution of calcium hydroxide.

OR

$$
\begin{aligned}
& \mathrm{Ca}^{2+}+\mathrm{OH}^{-}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

QUESTION FOUR (9 marks)

Part A (5 marks)

Consider two flasks in which the reaction system below is at equilibrium. CO_{2} is added to one flask. The temperature of the other flask is increased. In both cases the mixture is allowed to stand until equilibrium is restored.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad \Delta_{r} H^{\circ}=-802.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Compare the final equilibrium concentration with that prior to the change being applied.
Describe the direction of change (if any) in the concentrations of species and in K_{c} (the equilibrium constant) by writing increase, decrease or no change in the boxes below. $1 / 2$ mark each box correct

Change	$\left[\mathrm{CH}_{4}(g)\right]$	$\left[\mathrm{O}_{2}(g)\right]$	$\left[\mathrm{CO}_{2}(g)\right]$	$\left[\mathrm{H}_{2} \mathrm{O}(g)\right]$	K_{c}
Add CO_{2}	increase	increase	increase	decrease	No change
Increase in temperature	increase	increase	decrease	decrease	decrease

Part B (4 marks)

Ammonium thiocyanate is a reagent used to test for iron(III) ions in solution. The equation for the reaction forming the complex is given below.

$$
\mathrm{Fe}^{3+}(a q)+\mathrm{SCN}^{-}(a q) \rightleftharpoons \mathrm{Fe}(\mathrm{SCN})^{2+}(a q)
$$

In an experiment to find the equilibrium constant $\left(K_{c}\right)$ for the reaction at this temperature, 45.00 mL of a solution containing $0.200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Fe}^{3+}$ is mixed with 5.00 mL of a solution containing $0.00200 \mathrm{~mol} \mathrm{~L}^{-1}$ SCN^{-}. Colorimetric analysis shows that the equilibrium concentration of $\mathrm{Fe}(\mathrm{SCN})^{2+}$ is $1.99 \times 10^{-4} \mathrm{~mol}^{-}$ ${ }^{1}$.
a) Complete the table below to show, for each of the species involved in the reaction, the initial concentration (after mixing, before reaction occurs), the change in concentration (due to reaction to reach equilibrium) and equilibrium concentration.

Reaction	$\mathrm{Fe}^{3+}(a q)+\mathrm{SCN}^{-}(a q) \rightleftharpoons \mathrm{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})$		
	Fe^{3+}	SCN^{-}	$\mathrm{Fe}(\mathrm{SCN})^{2+}$
Initial conc/mol L-1	0.180	2.00×10^{-4}	0.00
Change in conc/mol Le	-1.99×10^{-4}	-1.99×10^{-4}	$+1.99 \times 10^{-4}$
Equilibrium conc $/ \mathrm{mol} \mathrm{L}^{-}$ 1	0.180 or 0.1798	1.00×10^{-6}	1.99×10^{-4}

$1 ⁄ 2$ mark each box correct = total 3.5 marks BUT if initial concs are not diluted (ie 0.200 and 0.002) then follow-on correct give 2.5 total
b) Calculate K_{c} at the temperature at which the experiment is carried out.

$$
K_{c}=\frac{1.99 \times 10^{-4}}{0.180 \times 1.00 \times 10^{-6}}=1.11 \times 10^{3}
$$

QUESTION FIVE (8 marks)

Compound $\mathbf{A}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$ reacts with SOCl_{2} to form compound $\mathbf{B}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}\right)$ which, on heating with alcoholic KOH , forms two alkenes $\left(\mathrm{C}_{5} \mathrm{H}_{10}\right)$, compounds \mathbf{C} and \mathbf{D}. Neither of compounds \mathbf{D} and \mathbf{E} can exist as cis-trans isomers. Addition of HCl to compound \mathbf{C} forms compound \mathbf{E}, an isomer of \mathbf{B}, as the major product, while addition of HCl to compound \mathbf{D} gives \mathbf{B}.
a) Deduce the structures and names of compounds \mathbf{A} to \mathbf{E}.

Space for working

5 marks for all correct structures plus 2 marks for correct names ($-1 / 2$ for each one wrong) = total 7 marks BUT if 2-methylbutan-2-ol and all names and structure follow correctly total 6 marks cpd A is pentan-2-ol and all names and structures follow correctly then 5 marks total (not 7) ALSO if cpd A is pentan-1-ol the maximum 4 marks for names and structure

Compound A

Name of A
3-methylbutan-2-ol

Compound C

Name of C \qquad
2-methylbut-2-ene

Compound E

Name of E \qquad

Compound B

Name of B \qquad
2-chloro-3-methylbutane

Compound D

Name of D \qquad 3-methylbut-1-ene
b) Draw a section of the polymer formed by addition polymerisation of compound \mathbf{C}.

1 mark - allow follow on from structure C above

QUESTION SIX (8 marks)

Part A (4 marks)

The octahedral compound MX_{6} has X in six equivalent positions.

a) Sketch the two possible isomers for the octahedral compound $\mathrm{MA}_{2} \mathrm{X}_{4}$ in which two groups are different from the other four. (2 marks)

1 mark each structure
b) Sketch the two possible isomers for the octahedral compound $\mathrm{MA}_{3} \mathrm{X}_{3}$ in which three groups are different from the other three. (2marks) ANS in one the three are mutally cis; in the other one pair is trans

1 mark each structure

Part B (4 marks)

A salt of vanadium(V) contains vanadium in the +5 oxidation state.
A one litre solution contains 2.55 g of vanadium as a vanadium(V) salt.
$\mathbf{2 5 . 0} \mathbf{~ m L}$ of the solution was treated with acidified aqueous SO_{2} to reduce the vanadium (V). The vanadium ion formed was reoxidised to vanadium (V) by acidified KMnO_{4} solution.
$\mathbf{1 2 . 5} \mathbf{~ m L}$ of $\mathbf{0 . 0 2 0 0} \mathbf{~ m o l ~ L}^{-1} \mathrm{KMnO}_{4}$ solution was required for complete reaction.

Deduce the oxidation state to which vanadium was reduced by SO_{2}.
$\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=0.0125 \times 0.0200=0.00025 \mathrm{~mol} \mathrm{~L}^{-1} \quad 1$ mark
$\mathrm{n}(\mathrm{V})$ in 1 litre $=2.55 \mathrm{~g} / 50.9 \mathrm{~g} \mathrm{~mol}^{-1}=0.0501 \mathrm{~mol}$ or in $25.0 \mathrm{~mL}=0.00125 \mathrm{~mol} \quad 1$ mark
Ratio $\mathrm{V}: \mathrm{MnO}_{4}{ }^{-}=0.00125 / 0.00025=5: 1$
1 mark

Since reduction of MnO_{4}^{-}to Mn^{2+} requires $5 \mathrm{e}^{-}$then each vanadium ion must lose $1 \mathrm{e}^{-}$.

This means vanadium ion was reduced to the +4 oxidation state.
1 mark

PERIODIC TABLE OF THE ELEMENTS

Lanthanide Series

Actinide Series

$\begin{array}{\|r} \hline 57 \\ \mathbf{L a} \\ 139 \\ \hline \end{array}$	58 $\mathbf{C e}$ 140 90	59 $\mathbf{P r}$ 141	$\begin{array}{\|r\|} \hline 60 \\ \mathbf{N d} \\ 144 \\ \hline \end{array}$		62 Sm 150	$\begin{array}{\|r\|} \hline 63 \\ \hline \mathbf{E u} \\ 152 \\ \hline \end{array}$	64 Gd 157	65 $\mathbf{T b}$ 159	66 $\mathbf{D y}$ 163	$\begin{array}{\|r} \hline 67 \\ \mathbf{H o} \\ 165 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 68 \\ \mathbf{E r} \\ 167 \\ \hline \end{array}$	69 $\mathbf{T m}$ 169	70 $\mathbf{Y b}$ 173	$\begin{array}{\|r\|} \hline 71 \\ \mathbf{L u} \\ 175 \\ \hline \end{array}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227	232	231	238	237	244	243	247	247	251	252	257	258	255	262

