Effective **Poster Design**

Matt Walters Science Communication and Digital Imaging School of Biological Sciences, UC

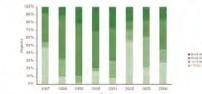
Sustainability of Canterbury Cockle Beds

UNIVERSITY OF CANTERBURY Te Whate Wananga o Waitaha CHRISTCHURCH NEW ZIALAND

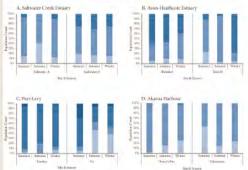
Adkins, S.C. & Marsden, I.D. School of Biological Sciences, University of Canterbury Christchurch, N.Z.

Introduction

The little neck clam Austrovenus stutchburvi, a food source for both humans and other species, is in decline throughout New Zealand. Apart from the Avon Heathcote estuary, little is currently known about cockle populations in the Canterbury area.


This study is part of a PhD project investigating environmental and anthropogenic effects on shellfish beds with the goal of establishing protocols which will allow the sustainable management of these beds. The poster presents initial population structures (Figures 2 & 3), site characteristics (Table 1) and density information (Table 2) of cockle beds for 8 sites, lanuary through to August 2006, Density statistics for one of these populations which has had a harvesting ban in place for over 10 years is also presented (Table 3).

Conclusions


All these data show the populations to be highly variable both in density (Table 2) and size structure (Figure 2, Figure 3 A-D), suggesting irregular recruitment success. The common factor supporting the hypothesis of populations in decline are the low numbers of small (or invenile) cockles.

Over harvesting has been broached as a possible reason for population declines, but the bed that has been closed to harvesting for several years shows low but stable population densities (Table 3).

Figure 2. Port Levy Class Sizes

1000 mm

Acknowledgements

This project is supported by: Brian Mason Scientific & Technical Trust; ECAN; NZEGW (Harriet lenkins Award); Port Levy Coastal Marine Soc.

References

Table I. Site characteristics

Site	Sediment	Salinity (g/100g)	Intertidal length (m)	Impacts & Land Use
Saltwater Creek (2 sites)	Sand/silt	2.5	6470	Gropping, catife & pig farm
Avon-Heathcode Estuary- Bromley	Sand/silt	3.0	500-550	Water discharge from sewage treatment plant: City
Avon Heathcoste Estuary- Tern St	Sand	3.2	100-550	Kitty
Port Levy -Fernlea	Sand/silt over larva flow base	0.2	-09-50	Grazing,
Port Levy -Pa	Mostly sand	3,4	30	Village, graving
Akaroa Harbour -Barry's Bay	95% altrclay*	3,3	300	Stream discharge, plus water input from cheese factory. Grazing
Akaroa Harbour -Takāmatas	25% silt clay*	0.3	300+350	Storm water discharge Village, grazing

Table 2. Mean cockle density (cockles/0.1m2) (or three seasons (2006)

	Saltwater A	Saltwater B	Bromley	Tern St.	Ternlea	Pa	Barry's Bay	Takamatan
Summer	14	11	5	12		5	20	75
Autumn	17	18	.9	20	3	10	20	50
Winter	20	29	8	.50	à	6	8	31

Table 3. Mean cockle density (cockles/0.1m²) at Pa site, Port Levy, 1997-2003, and 2006

Kaka Beak: Conservation ^{by}Cultivation

Jason Song¹² Paula E Jameson¹ Garry K Burge³ John Clemens¹² 1. School of Biological Sciences, University of Canterbury, Christchurch, 2. Institute of Molecular BioSciences, Massey University, Palmerston North, 3. New Zealand Institute for Grop & Food Research, Palmerston North

Ngutukaka (Clianthus, the Kaka beak) is one of New Zealand's few brilliantly coloured flowering plants. The genera, Clianthus, only occurs in New Zealand. The last remaining plant of C. puniceus died in 1996 (Site 12, Fig 1). With fewer than 100 plants remaining in the wild, C. maximus is now critically endangered and becoming rarer as small populations simply disappear through slips or browsing by deer and possums [Note: Clianthus is a legume and its pods and leaves are highly nutritious]. The eleven remaining populations are spread over the East Coast of the North Island (Fig 1).

> Cultivation, both privately and commercially, is desperately needed to save the kaka beak A few seeds were rescued from the last C. puniceus plant and these are being grown

under supervision. Fortunately, C. maximus is a popular ornamental garden plant already, and seven cultivars are widely grown. BUT:

> (1) Do the cultivated varieties represent the wild populations?

(2) What is the genetic relationship among wild populations and how can this information be used in species conservation?

> (3) Is there enough genetic diversity among the remaining populations for kaka beak to survive in the wild?

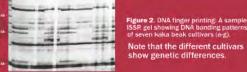


Figure 3. Genetic relationship tree built using DNA markers. Note that all the wild populations (1-12) and cultivars (a-g) are genetically different. No wild populations are in cultivation!

 DNA marker (AFLP, ISSR and RAPD) analyses revealed that all of the 12 wild populations and seven commercial cultivars are genetically different from each other (Fig 2).

 There is moderate genetic diversity among populations. All wild populations are important contributors to the total genetic diversity, and should be used for species conservation. A genetic relationship tree was built (Fig 3), and this was recently provided to DOC to assist their conservation recovery planning.

 Commercial cultivars originated from only a few sources (Fig 3). New cultivar development from selected wild populations can put more genetic diversity under cultivation and would be beneficial for species conservation.

· Surprisingly, our results do not support the current two species classification. The C. puniceus seeds are possibly from a population of C. maximus (Fig 1, Fig 3), and C. puniceus may have gone extinct many years ago.

 The future of kaka beak looks bleak unless individuals of the wild populations are brought into cultivation to act as founder plants for population reestablishment and/or cultivar development.

 Conservation by cultivation should be successful for kaka beak because it is an attractive ornamental plant.

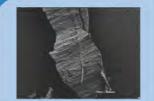
RESEARCH SCIENCE & ECHNOLOGY

Massey University

COD

Bolton-Ritchie, L (2005) Sediments and macrobiota of the Intertialal flats of Inner Akaroa Harbour. ECAN report U05/64 Voller, R. (2005) Report on Koukourarata cockle hed surveys at Purt Levy 1997-2006

Warning



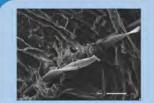
Sooty beech scale insects (*Ultracoelostoma* sp.) are vitally important for beech forest ecology, but we know very little about them. These images are the first detailed pictures of the insects' feeding and excreting structures.

Naked mature female scale inserts lack many distinguishing features, and are essentially lipid-filled sucs.

The stylets follow the nutritious tissue around the circumfe of the tree

The tip of the trylets has notches that may help in penetrating through the wood

Neil Andrews and


School of Biological Sciences, University of Canterbury

Roger Dungan

UNIVERSITY OF

The mouthparts are controlled by muscles attached to a tentoric which houses a cybical pamp

Monthearts remain embedded in the true as insects moult, requiring

Once they have found a suitable place to settle, fermile insects stay in the same place for the rest of their lives. (Plant MatrWalters)

Orice digisted, waste is exercised as heneydew through a long wax and take. This tangled pair of takes, each from a separate insect, is covered in fine wast. Glance, extracted from ones, close to the senio

The glistening drops of honeydew (Phono Mag Walters)

destocation, and to ism

over the bark of tree tranks and branches Photo Matt Wahara

Physiological Effects and Biotransformation of **PSP** Toxins in the Greenshell Mussel Perna canaliculus

Andrea M. Contreras¹, Islay D. Marsden¹ and Murray H.G. Munro ISLay.marspen@canterBury.ac.nz School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand Department of Chemistry University of Canterbury Private Bag 4800 Christchurch New Zealand

The greenshell mussel Perna canaliculus is known to accumulate toxins in its tissues when exposed to PSP causing dinoflagellates. It is the most abundant bivalve in subtidal aquaculture in New Zealand. It is abundant intertidally and is of cultural significance to Maori. Because shellfish closures are based on the levels of toxins in the tissues of this species it is important to investigate the rates of toxification and detoxification and also examine the PSP toxin profile in the mussel tissues compared with the toxic dinoflagellate.

Mussels were provided with the toxic dinoflagellate Alexandrium tamarense as a feeding culture with Tetraselmis sp. using a non toxic species Alexandrium margalefi and Tetraselmis sp. as the control.

Mussels were fed a diet containing toxic dinoflagellates for 10 days and then exposed to a detoxification period of 8 days when they were provided with Tetraselmis sp. only. Clearance and excretion rates were measured and the tissues analysed by HPLC using post column oxidation and fluorescence detection.

Clearance rate was variable during the exposure, however, at each time interval there was no difference in the clearance rates of mussels that were ingesting toxic dinflagellates compared with the non-toxic control. Excretion rates were also similar for the two groups throughout the experiment.

P. canaliculus readily fed on both Alexandrium sp. and in the toxic group the levels of STX in the tissues increased to above 00 µg STX equiv. between day 3 and 6 days of exposure. When the toxic algae were removed from the diet the STX value declined rapidly within 8 days to low

There were considerable differences in the toxic profile of the dinoflagellate A. tamarense and the mussels. Perna canaliculus had lower proportions of N-sulfocarbamoyl toxins and higher proportions of carbamoyl toxins than the toxic dinoflagellates that had been ingested. Differences were found between the toxin profile of different mussel tissues. The bioconversion of the PSP toxins by epimerization of the ß to α-epimers C-11 took place more actively in the digestive gland than in the other tissues.

Clearance rate (CR) d fin d as th volum of wat r cl ar d et/a elmi sp (50 x 10 c th/indvklay) non ood A margalefii (0 15 x 10 c tarindvklay) non ood p runittim Excretion rate (ER) d fin d

etra elmi sp (50×10 < landvidey A tomaren e(015×10 < landvidey Control diet (n 3)

Mussels had an acclimation period of days to non toxi etro elmi sp (50×10 c itniindwiday) A margalefii (0 15×10 c itniindwiday) s

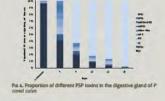

Fig. Experimental design including acclimation intoxication and detoxification periods

Fig 2. Clearance rates of P canal culus feeding on toxic A tamarense or non toxic A margalef with Tetraselm s so

Pie 3. Excretion rates of P canal cutus feeding on toxic. A tamarense of

non toxic A margalefi with Tetraselm s sp

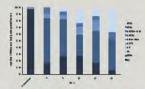
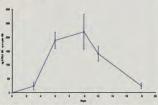
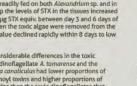


Fig 5. Proportion of PSP different toxins in remaining body tissues of P canal culus

PSP Toxins

PSPF tootens Carbamoty (kotins: Saalton's XI). H. osaetovin (H. o). Genyautanin 1 (G. X3). Genyautanin (G. X.). Genyautanin 3 (G. X3). Genyautanin 4 (G. X4). H. sulfocarbamotyl tootins: Galaways I (G.). Genbarreyt. (K.). Carbamoyi 3 (C3). Genhanoyi, 4 (C). Genyautanin 3 (G. X3). Genyautanin (G. X4). Decarbamoyi toxins: D carbamoyi G X1 (dcG X1) D carbamoyi G X (dcG X) D carbamoyi G X3 (dcG X3) D carbamoyi G X4 (dcG X4) D carbamoyi S X(dcS X) D carbamoyi N AldKN




Fig. 6. Whole 5 X body toxin burden of *P canal culus* feeding on toxic

On exposure to PSP toxic causing dinoflagellates the greenshell mussel rapidly accumulates toxins within the tissues. This species is therefore an excellent indicator species for PSP toxins especially at the start of a bloom event. Because the toxins can be eliminated relatively quickly from the tissues there is potential for rapid

hanks to staff at the Cawthron Institute Nelson for supplying the algal cultures and guidance in toxic alanlysis echnical staff in the Department of Chemistry are thanked for their assistance in undertaking the HPLC analysis

Poster pesion by Matt Walter

Peeroo (n 8)

Excretion runs (or) as the total properties of absorb d in rgy liminat d as in tabolic r sidu s (ammenia) by xcr then organs PSP diet (n 5) etro almi sp (50×10 c larindwide A margalefii (015×10 c larindwide)

Forest in a Petri Dish wa Rapid Answers to Wood Quality Questions

Hema Nair and Sandra Jackson School of Biological Sciences, University of Canterbury, New Zealand.

We have developed a technique to grow wood outside the tree in the laboratory. This organ culture system enables us to manipulate growth conditions in a controlled manner to a degree that is not possible in an intact tree. In addition, the response of the tissue to the experimental conditions is rapid making it possible to conduct many experiments in a short time.

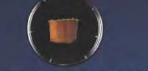
Radiata pine accounts for 90% of exotic timber in New Zealand. A small proportion of this wood develops a defect upon kiln drying called intraring internal checking. Checking influences the appearance of the wood making it unsuitable for products like furniture. Since this has a negative economic impact, it is desirable to eliminate this wood quality defect.

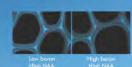
Nutrition and plant growth regulators (hormones) can influence the size and shape of plant cells as well as the cell wall composition. We have established that these properties are different in checked wood. By manipulating the nutrients and hormones in culture conditions we are learning which conditions may result in the development of check-prone wood.

Wood cultured in the laboratory allows us to perform many experiments in a short time, thus allowing for rapid advances in our understanding of the comlpex relationships between growth, genetics, nutrition and wood quality. This knowledge can be applied to silviculture and tree breeding practices, adding value to timber from radiata pine grown in New Zealand.

Admowledgements

We would like to finank Ketth Ateckle of WOI bit and Graeme Young of Tenon Ird. We would like to acknowledge the help of Matt Wathen, Anarhed higerfield, Tracy Puncezki, Shayne Walth and Seema Dear. Hi Nofr wont to finant WOI bit allong with "Ferfort, Stakation Commission her Bright Future Enterprise Doctoral Scholarship.




Figure 1: The meristematic cells just under the bark of the tree are cut out under sterile conditions. These cells are specific nutrients and plant arowth regulators.

growth ring, extending through the earlywood and ending at or in the latewood.

iowe 4: Wood texture, colour, cell size, cell boron and the growth regulator auxin (NAA) were varied in the growth medium.

Miniature Farmers ^{on}Massive

Do scale insects regulate the productivity of beech forest?

- What regulates ecosystem productivity? In wet ecosystems like streams and oceans, productivity is often regulated from the top down, by large herbivores or predators. In terrestrial ecosystems, control is usually from the bottom up, and is regulated by photosynthesising plants. This is an important question for ecological researchers, because ecosystem productivity underpins the response of forests to global climate change.
- Beech trees in New Zealand are parasitized by scale insects that live in the bark of tree trunks and branches. Insects insert their mouth-parts into the wood, feed on the sugary sap, and excrete the sugar they don't need through waxy tubes. This forms droplets of honeydew, which is a vital food source for native birds and insects (Figure 1)
- This interaction offers the fascinating possibility that productivity of I million hectares of forest. is controlled by insects' feeding; a rare and exciting example of widespread top-down control in a forest ecosystem.
- Day-to-day tree growth is regulated by the balance between carbon sources (i.e. photosynthesis) and sinks (parts of the plant with strong demand for energy). We hypothesise that scale insects alter source-sink balance of beech trees, stimulating extra photosynthesis which enables infested trees to compensate for the sugars lost via insect feeding.

- We quantified the size of the carbon source in trees with and without insects using a computer model that scales-up a biochemical model of photosynthesis to the whole canopy. Model parameters were derived from a year of field measurements (Figure 2).
- The size of the extra sink of scale insect feeding was estimated with a newly-developed computer model of honeydew production that accounts for seasonal as well as tree-to-tree variability in honeydew production.
- Trees with and without insects were partially shaded. This increases the demand for sugar production, stimulating extra photosynthesis in unshaded leaves. If our hypothesis is right, we should see less extra production in trees with insects, because the insects had already stimulated photosynthesis

Insects 'farming' trees for sugar

The model estimated that trees with insects were losing 520 kg of carbon per hectare to honeydew.

- This carbon loss was balanced by extra photosynthesis. Trees with scale insects had 5% more annual photosynthesis than trees without insects, equivalent to 450 kg carbon per hectare.
- Our shading experiment showed that trees with insects had little extra capacity for photosynthesis, suggesting the insects were already stimulating photosynthesis (Figure 3).
- Our results suggest that scale insects are inducing extra photosynthesis in the trees they feed on. This is a unique example of widespread top-down regulation of forest ecosystem productivity. and shows that scale insects are effectively farming sugar from 1 million hectares of beech forest
- native forests. This is improving models of the national carbon budget, which are an important part of New Zealand's Kyoto Protocol response. It is also giving important new insights into a keystone Interaction In beech forests that is vitally important for the conservation of threatened native birds and insects that depend on honeydew for food.

Roger Dungan, Matthew Turnbull, Dave Kelly of Biological Sciences, University of Canterbu

Figure 1. (Clockwise from left). Trees covered wit oduced by scale insects are a distinctive part of lowland beech forest. The small appicot-coloured insects settle in cracks in the bark, and produce hard waxy covers for protection. Mature insects have no hard exoskeleton and few listinguishing features.

CO. in the leaf

that is driven by enzyme activity and dectron transport in chioroplasts.

Figure 3. Trees with and without insects were partially shaded, and changes in the nthetic capacity of the unshaded leaves measured. Trees with insects showed less upregulation than trees without insects. This suggests their production was already ncreased by the scale insects

This research is making an important contribution to our understanding of the productivity of

Understanding the legacy of aged p,p'-DDT and p,p'-DDE residues in New Zealand horticultural soils

Sally Gaw¹, Grant Northcott² and Lucia Ving²

Introduction

- p.p -DDT was widely used in New Zealand from the 1840s to the 1970s to control horticultural pests. Elevated concentrations of p,p -DDT and p,p -DDE have been measured in NZ
- horticultural soils.¹ Previous studies have shown that a proportion of these residues remain
- available for uptake by edible plants and earthworms despite four decades of aging.12
- The size of the bioavailable fraction of the aged p,p -DDT and p,p -DDE residues had not previously been quantified.
- Tenax TA has been proposed as a surrogate measure of the bioavailability of hydrophobic organic contaminants (HOCs) in soil.*
- Persulphate oxidation has been proposed as a surrogate measure of the bioavailability of HOCs for microbial degradation.

Aim: To estimate the hipmunilable fraction of aged p,p -DDT and p,p -DDE residues in orchard soils

Methods Study soils

Five orchard soils with known p,p +DDT and p,p +DDE concentrations were selected (Table 1.)

Table 1 p,p -DDE, p,p -DDT and EDDT concentrations and selected soil

characteristics for study soils.

501	(HENC)	Genen	ballen	Nointy	Nett	Xiand	pH	CBC	3, 10
Orchard 1	6955	6137	14160	42	53	4	53	25	-44
Orchard 2	478	255	940	35	53	12	55	18	27
Orchard 3	388	139	560	30	63	7	6	17	45
Orchard 4	4389	1907	6576	28	65		6	19	55
Orchard 5	11850	16720	\$2460	19	63	18	6	21	69

Total soil p,p -DDT and p,p -DDE concentrations Total p.p -DDT and p.p -DDE were extracted usine 2.3 acetone hexane, purified by adsorption chromatography and analysed by GC-ECD.

Persulphate oxidation

Duplicates of the field moist spils were heated (3 h at 80°C) with a solution of K_2SQ , at a S_2Q^2 organic matter ratio of 12g/g and a final solution S_2Q^2 concentration of 0.04 e/mL^2 The oxidised soils were extracted with 2.3 acetone hexane and analysed by GC-ECD.

Tenax TA Desorption Experiments

Short term

The field moist soils (1g) were extracted for 24 hours by shaking with 0.25 g tenax and 50 mL of 0.005M CaO_/0.01 M NaN, The tenax was recovered by vacuum and extracted with acetone hexane and hexane. The extracts were purified by adsorption chromatography and analysed by GC-ECD.

Long term

Triplicates of field moist soil were extracted with tenax as described for the shortterm experiments. At each sampling time the tenax was replaced with fresh tenax and additional 0.005M CaCl_/0.01 M NaN, added. The recovered tenax was extracted as described previously. There were 26 sampling periods in total over 162

The results were modelled using a three compartment kinetic model that describes the rapid (r), slow (sl) and very slow (vs) desorbing fractions of HOCs.

 $F_{des} = 1 - (F_s(e^{k_s}) + F_s(e^{k_s}) + F_s(e^{k_s}))$

F values and rate constants were determined using nonlinear regression in the statistical package R.

Table 2 Percentage of p,p -DDE, p,p -DDT and EDDT desorbed by tenax

	241	ebura .	182	days
Soll	p.01-00E	R.P-DDT	p p1+008	R.P. DOT
Orchard 1	16	16	43	49
Orchard 2	28	15	40	41
Orchard S	-15	7	28	26
Orchard 4	- 13	10	32	37
Orchard 5			37	43

Days Table 3 Rapid desorbing fractions (Fr) of p,p -DDE and p,p -DDT and % p,p -DDT oxidised by persulphate Orchard 1 18 15 15 Orchard 3 12 . 4

-	Sec. 21. 1	10.000	
Result	ts and	discu	Ission

10

Up to 16% of p,p -DDT and 28% of p,p -DDE were released from the orchard soils in 24 hours in the short-term release experiment (Table 2).

12

110

- Up to 53% of p.p -DDT and 43% of p.p -DDE were released from the orchard soils over the 162 day experiment (Table 2 and Figure 1).
- The rapidly released fraction F_{Γ} represents the bioavailable fraction. Values for F_{Γ} ranged from 8 to 19% for p,p -DDT and 10 to 21% for p,p -DDE (Table 3).
- Fr for p.p -DDT was significantly correlated (p<0.05) with the fraction desorbed over 24 hours Up to 37% of p,p -DDT was oxidised by persulphate
- The magnitude of the persulphate oxidisable fractions were comparable to
- the bioavailable fractions (Fr) estimated from the tenax long-term release experiments

Conclusions

Orchard 4

Orchard 5

- Aged residues of p,p -DDT and p,p -DDE remain bioavailable despite four decades of aging.
- remediation potential of these soils is limited as Fr is less than 20% for p,p DDT and p,p -DDE and less than 40% of p,p -DDT was oxidised.

References

- Gaw SK, K m ND, No thoott GL, W R m AL, Rob nson G. (2006) Liptake of 2007, a sen c, cedm um, copper, and lead by lattice and ad sin g own n contaminated ho ticultu al so is. J Ag. c Food Chem 56 6584-6593 Gaw S, No thoott G, K m N, W Ik ns A, Jensen J (205.2) Compa son of ea theo m and chem cal assays of the b cave lab i ty of aged 1 1-d chic o-2,2-b s(p-chic opheny()athylane, 1,1,1-t chic o-2,2-b s(p-chic opheny() ethens, and heavy metals in o chie d so is. Env. on Tox col Chem DOI: 10.1002/etc.181
- B and E, Pe menbu g W, B. G, V nk J, Ljass J, Ten Hulsche D, Jonka C, Romkens P, Roex E. (2009) Towa ds mplementarition of b serve lab 1 ty measu errents in the Dutch equilato y f americo k. BVM Repo E 711705084/2009. BVM, 8 kinowen, The Nethe Janda.
- Cuspe s C., G. otenitus T., Joz asse J. and Rullians W. (2000) Rep d pe sulfate ox dation p. ed cts PAH availability in splis and sed memb. Env. on Sc. Section, 34, 2057-2063

Acknowledgements

D. Crittenden (University of Canterbury) for assistance with the kinetic modelling. M. Walters for assistance with poster preparation.

Trace element concentrations in the Avon River and Avon-Heathcote Estuary following post-earthquake sewage discharges

Sally Gaw¹⁴ Lauren Raffensperger¹, Marlese Fairgray¹, Grant Northcott² and Louis Tremblay³

Introduction

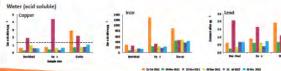
The 6.3 magnitude earthquake in Christchurch on 22rd February 2011 and subsequent aftershocks had devastating effects on the city. Key infrastructure including wastewater pipes was badly damaged. The extent of land damage in the central city and surrounding suburbs is shown in Figure 1. Raw sewage was discharged into the Avon and Heathcote Rivers and the Avon-Heathcote Estuary from February until October 2011. These sewage discharges were the result of numerous broken waste water pipes and pumping of raw sewage into the rivers as a disposal mechanism (Figure 2). The effects of discharging large volumes of untreated sewage into the rivers and estuary on contaminant concentrations were unknown. This study is part of a wider study investigating micropollutant concentrations including sewage organic contaminants in the Avon River and Avon-Heathcote Estuary as a result of the raw sewage discharges.

The Avon River is approximately 26 km in length and flows through a highly urbanised catchment of 90 km² prior to discharging into the Avon-Heathcote Estuary. The Avon River and Avon-Heathcote Estuary both provide important wildlife habitats.¹ Total daily overflow volumes of sewage discharged into the Avon River ranged between 3,000 and 40,000 cubic metres.²

Study objective

Avon- Heathcote Estuary. Methods

Sampline commenced in September 2011 after the majority of the sewage overflows had ceased. Water samples were collected from the Avon River at Antigua Boatsheds, Kerrs Reach and Owles Terrace and sediment samples were collected from the river sites and an additional two sites in the Avon Heathcote Estuary. Humphrey's Drive and Penguin St (Figure 3). The Antieus Bostsheds site was chosen as a control site as it was located upstream of the known sewer overflows.


To determine if the discharge of untreated

sewage increased the levels of trace elements in

water and sediments of the Avon River and the

The water samples were collected from the shore usine an acid washed HDPE container attached to a pole. Samples for analysis of acidsoluble trace elements were acidified to pH<2 with quartz distilled HNO_g. Samples for analysis of dissolved trace elements were filtered (<0.45 um) and acidified to pH-(2.

River surface sediments were collected in 250 mL polystyrene containers using a "Mighty Gripper". Estuary surface sediments were collected using stainless steel spoons. The sediments were dried at 70 °C and sieved to <2mm. Duplicates of each sample were digested using USEPA method 200.8. Water samples and sediment digests were analysed for Cu, Fe, Pb, Ni and Zn by ICP-MS.

References

Service Andre M. Theory, C. 2008, Internet Statements Math. Discrete All Sciences and Computer Styles Computer Styles Computer Systems and the Sciences Computer Systems and Computer Systems and

lagen geographic gan else a sectore conservation in the book and more about the degraphics. The provides And the sector has indeed intermentation of the descence face (Another and provides the sectore sector) And the sector has books, the provide

Supervised and a second as possible and the second second second second second second second second second sec Supervised as a second second

monitoring data (2007-2010) for other sites on the river.

predominantly present in the dissolved phase (<0.45 µm).

95% level of protection⁸ at all sites for some sampling dates

ANZECC T and value

Results and discussion

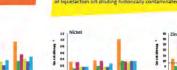
over the sampling period.

elements "

Sediment

general order Zno-Pbo-Cuo-Ni (Figure 5).

Sediments


Water

Acknowledgements We would like to theirk ESB for anti-barrenivity sumpting and Teb staingenae (University of Centerbury) for therein hits unelsate

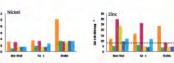
RAWTHRON

UNIVERSITY OF CANTERBURY

-

fe Where Minangi e Wie Plant & Food

RESEARCH



Conclusions

Irace metal concentrations in the Avon River and sediment Avon River and won-Heathcote Estuary sediments can exceed the ANZEOC water quality trigger values and the ANZECC ISQG-Low guidelines for sediment. Sediment trace element concentrations may have been reduced as a result of liquefaction silt diluting historically contaminated sediment

Trace element concentrations in the river water samples followed the general order

Fe and Pb were predominantly associated with particulates and Cu. Ni and Zp were

Concentrations of Cu and Zn exceeded the ANZECC water quality trigger values for

There was no overall temporal trend for trace metal concentrations in river water

Trace metal concentrations in the river and estuary sediments followed the

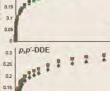
ANZECC ISOG-Low guidelines for sediment⁸ on some sampling dates.

Trace metal concentrations were lowest in the Penguin St sediments

The lack of recent pre-earthquake data for trace element concentrations in sediments the Avon River and Avon-Heathcoate Estuary makes data interpretation problematic. The measured sediment trace metal

Concentrations of Zn in sediments from the Kerrs Reach and Antigua Boatsheds

ampling sites and concentrations of Pb in Kerrs Reach sediments exceeded the


concentrations are likely to be lower than prior to the earthquake sequence

occurring as it has been estimated that up to 40% of the estuary was covered

by liquefaction and significant quantities of liquefaction silt entered the river

systems. Liquefaction has been found to contain low concentrations of trace

Fe>Zn>Cu>Pb>Ni (Figure 4) and were consistent with Christchurch City Council

1 2 2

mRep2

ABard

Figure 1 Tenas

desorption prot for Orchard 3

a) p.p -DDE and

FRE

- 31

b) p.p -DDT

p,p'-DDT

0.25

02

Summary

- Key messages, not every message
- Less is more
- Just because you can doesn't mean you should
- Be consistent, bold and clear
- Use logical navigation to lead your audience
- Explain the 'why' of your research

Purpose

Why are you making a poster?

- Who are you presenting to? your audience
- What are you presenting to them? your key messages
- Why should they care? relevance to them

The number one problem is too much text.

Text first

- First write the text before designing the layout.
- Word count should not exceed 800. Posters are visual show don't tell.
- The time taken to make a poster will expand to fill the time available to make a poster.
- Front load sentences with important content first. People scan the first 3–5 words of a paragraph looking for keywords.
- Keep paragraphs short. Text appears less dense and front loading is more effective.

Title

Short, relevant, quirky

- Your audience is mobile and easily distracted
- You need to attract attention and create interest
- Make it readable from 5 metres
- Choose the typeface carefully, avoid large blocks of UPPERCASE
- Use your first name and surname makes you more approachable.

Framework

- Identify your **key messages** short statements Build your poster around these.
- **Sub-headings** help your audience navigate through your poster.
- Develop a **one sentence overview** of your project, this will also be useful when presenting your poster.
- Edit out excess. If its not adding its subtracting.
- Inverted pyramid put the most important information at the start. Put your conclusion in your title.

Word count 800

 No abstract, unless forced to 	50
 Introduction, short and interesting 	200
 Materials and Methods, tables and figs 	200
 Results, get to the point, figures, images 	200
• Conclusions, remind, discuss, relevance, future	200
• References, maximum of 10	
 Acknowledgements, support, advice, funding 	40

Look at me

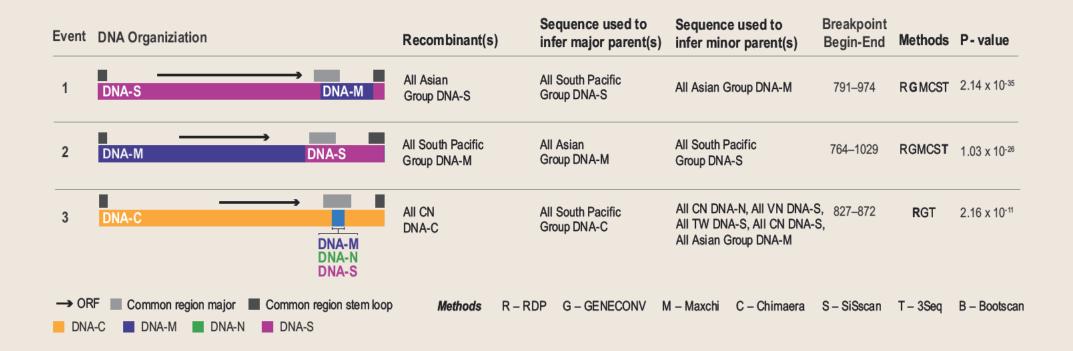
Posters are easy to ignore

- Many posters are presented at one time, why should someone stop at yours?
- You first need to attract their attention- bold, clean, professional, interesting, quirky.
- What will your audience respond to?

Software

Learn how to use page layout software.

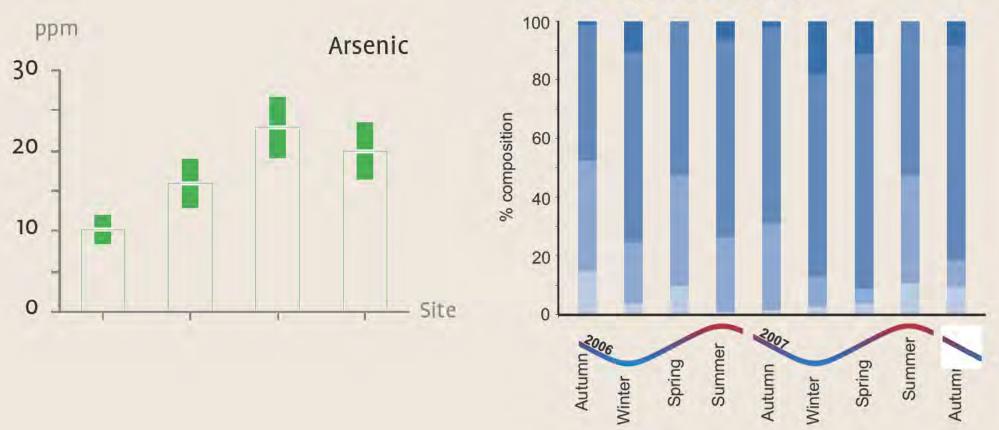
- Powerpoint[®] is designed for on screen viewing of files, not print output. It may look good on screen and is easy to use, but there are often tears at print time. General rule is to avoid Powerpoint[®].
- Software such as Adobe InDesign[®] and Coral Draw[®] are recommended for posters. They have better controls for layout and are not hard to learn.

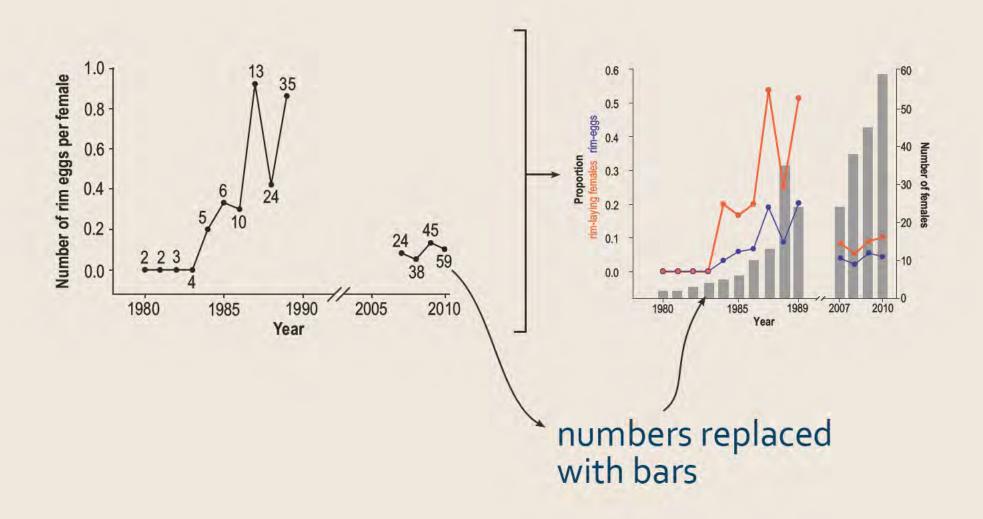

Tables

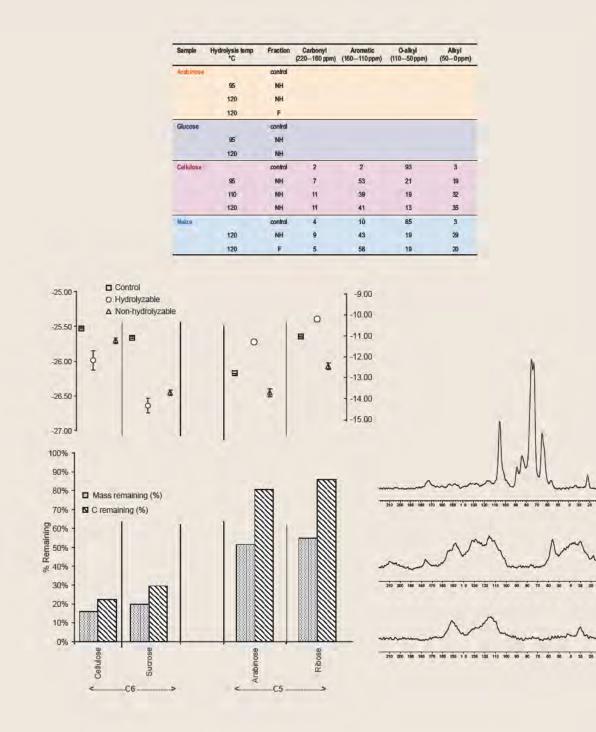
- Use **space** and **lines** to organize tables, draw the readers' eyes across the data.
- Make the most **important information stand out** by using bold type, colour and highlights.
- Make the information easier to navigate by sorting/ordering.
- Remove excess information.

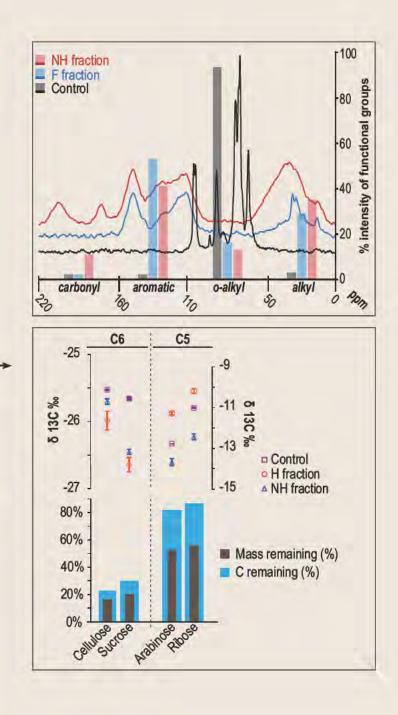
	Mean size	Largest size	Ν	Р	As (mg/Kg)	Cu	Zn	Silt	Salinity	Human impacts	Agricultural impacts
Largest size	0.7547	1									
Ν	-0.1877	-0.6678	1								
Р	0.1049	-0.2714	0.3663	1							
As	0.3221	0.0501	0.19464	0.93538	1						
Cu	0.4049	-0.076	0.38681	0.83905	0.82795	1					
Zn	0.5206	0.156	0.04001	0.56513	0.58135	0.84145	1				
Silt	-0.1169	-0.494	0.93866	-0.3444	0.26979	0.41831	0.09422	1			
Salinity	-0.1267	0.3422	-0.6119	-0.2885	-0.15743	-0.5004	-0.19692	-0.46479	1		
Human impacts	-0.057	-0.066	.32859	0.22722	0.29167	0.30546	-0.10728	0.40570	-0.061505	1	
Agricultural impacts	-0.125	-0.138	-0.0730	-0.6612	-079782	-0.6452	-0.53111	-0.31087	-0.1207	-0.3333	1

Table 1: Correlation results for cockle size, trace metals and environmental variables


Correlations in **bold** are significant(*P*=0.5)


Subject	Room	Day	1	2	3	4	5	6	7	8
432 Cell Biology (am)	275	MON	27 Feb	12 Mar	26 Mar	30 April	14 May	28 May	16 Jul	30 Jul
491 Plant Biotechnology (am)	423	TUES	28 Feb	13 Mar	27 Mar	1 May	15 May	29 May	17 Jul	31 Jul
470 Behaviour (pm)	423	WED	29 Feb	14 Mar	28 Mar	2 May	16 May	30 May	18 Jul	1 Aug
430/406 Genomics (am) 🕕	275	THUR	1 Mar	15 Mar	29 Mar	3 May	17 May	31 May	19 Jul	2 Aug
478 Evolutionary Ecol. (am)	275	FRI	2 Mar	16 Mar	30 Mar	4 May	18 May	1 Jun	20 Jul	3 Aug


Graphs


- Remove excess lines, colour, shading, text.
- Can graphs be merged to show the information better?
- Design the graph at the size you will use it to avoid ugly resizing.
- Consider reducing the contrast of low value information such as the axis.
- Avoid frames around graphs.

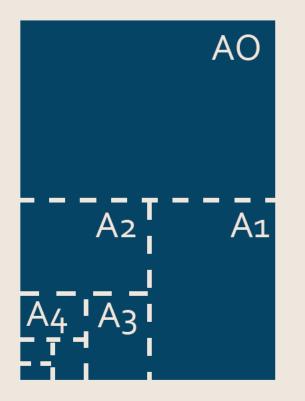
Saltwater Creek - Site A

Design not decoration

AIDA Attention > Interest > Desire > Action

Think of a poster as an advert for your topic.

You need to:


- Attract attention to the poster
- Generate interest in the topic
- Convince the audience to read the poster
- Lead the audience to take some action, such as ask a question

Layout

Understand the rules before you break them.

- Leave a good size margin around the edge to prevent your presentation appearing cramped. **General rule is 20 mm margin.**
- Lines of text should not exceed 15 words as they become hard to read. **General rule is 12-15 words per column width**.
- People are trained to read top to bottom, left to right, starting in the top left. Going against this standard can cause confusion. Proceed with caution. **General rule is 3 columns**.

Use a grid		
• Use a grid to align elements.		
 Make your columns strong by aligning as many elements to the left as possible. 	g	
 Avoid underlining, use bold for emphasis. 		
 Use bullet points where appropriate. 		
 More space, less text. 		

Standard page sizesAO841 x 1189 mm

A1 594 x 841 mm

A2 420 X 594 mm

You can trim your poster be a different size within these limits.

Writing style

- Short sentences are easier to read
- Use plain english, remove jargon
- Break text into small chunks
- Front load sentences important information first

Mosquitoes must have water to complete their life cycle (Fig. 1). This water can range from very high quality to sewage water and can be in almost any container imaginable (Fig. 2). Adults may carry dangerous diseases to both people and animals. Dengue Fever, Western Nile Virus, Ross River fever and numerous forms of encephalitis are a few of the diseases that are carried by mosquitoes in Tonga. The feeding habits of mosquitoes are quite unique in that it is the female that requires protein from blood for egg production, males feed predominantly on plant juices.

96 words

Adult mosquitoes can transmit deadly diseases to humans and animals. In Tonga these diseases include Dengue Fever, Western Nile Virus, Ross River fever and numerous forms of encephalitis.

To complete their life cycle mosquitoes must have water.

The water can be in almost any container and range from pure water to sewerage.

The feeding habits of mosquitoes are unique. The males feed predominantly on plant juices, but to produce eggs the female requires protein from blood.

76 words

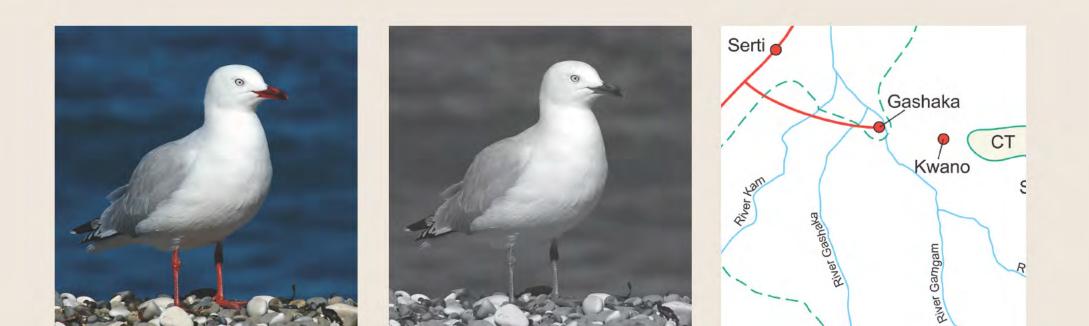
Туре

Use a maximum of 2 typefaces, but only one from each of the type families:

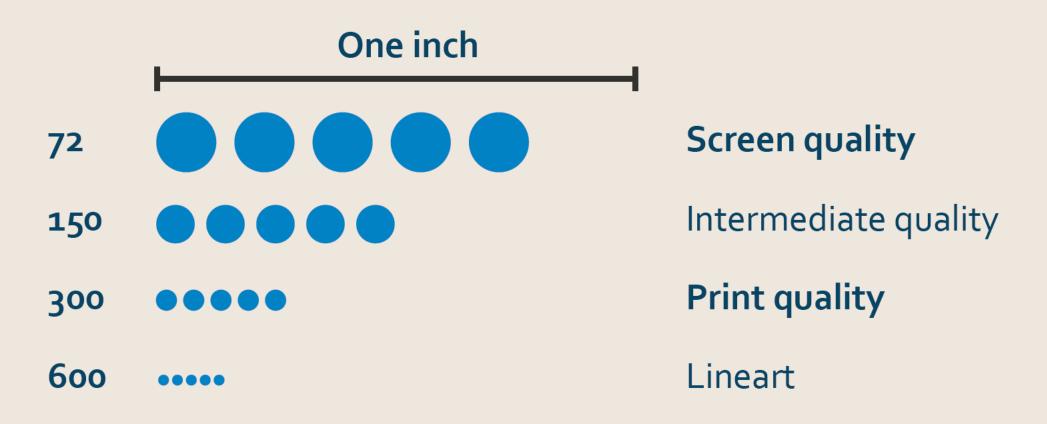
- serif (Times, Garamond, Bookman)
- sans serif (Arial, Corbel, Tahoma)

150+ pt title40 pt sub heading26 pt body text

Naviagation


- Your poster must be easy to navigate
- Most people will not read a whole poster, they will jump between sections
- Use large, informative headings to help your audience find their way.

Colour


Greyscale

Lineart

Resolution

Dots per inch

High resolution

Low resolution

Web – low resolution, do not print clearly, number of pixels in image important

Copyright – be aware, acknowledge source, ask permission

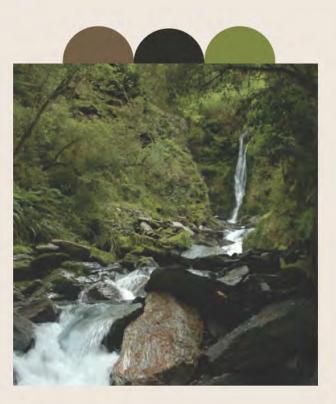
pTaxuskever.jpg 200 x 200 pixels - 18k 207.5.71.37/biobest/nl/plagen/taxuskever.htm

clamp.JPG 640 x 480 pixels - 104k www.a1sew.com/biological.htm dvic384.jpg 768 x 512 pixels - 64k www.au.af.mil/au/awc/systems/dvic384.jpg

butterfly-sm.jpg 175 x 175 pixels - 9k www.rainforestweb.org/.../Biodiversity/

1024 x 768 pixels = 10cm x 6cm print (300 dpi)

Graphics


- Table, graph or text?
- One message in each graphic, image or graph
- Remove anything that is not necessary, such as lines, colours, legends, 3D shading.
- Make figures bold and simple, they must be able to stand alone.
- Captions and titles should be short and clear.
- Use resolution independent vector files (eps,emf, pdf) over bitmap (jpg, png, bmp).

Colour

Overuse of colour is distracting

- Less is more
- Be consistent
- Use logical colours

Printing

Convert to pdf to reduce issues

- Portable document format (PDF) the name says it all.
- Different computers have different settings and fonts, pdf files are designed to look the same across different platforms.
- Ensure the quality setting is for *print* not standard, otherwise image quality is reduced.

Less = more

Remove unnecessary content

- Improve the signal to noise ratio by removing frames around objects and fill colours where possible.
- If required keep the stroke weight on frames as light as possible. Minimum of 0.25 pt
- Avoid images behind text it is very distracting.
- A contrast of 70%+ is required to easily read text.

Steps to follow

- 1. Identify key messages
- 2. Identify audience
- 3. Write text in a separate file
- 4. You wrote too much, edit text to remove excess
- 5. Gather or generate high quality image and graphics files

6. Import all text and images into layout software

- 7. Design rough layout to get an idea of how it all fits
- 8. Refine design
- 9. Check for errors
- 10. Produce print-ready file

Less text

Remember

- Less is more
- Just because you can, doesn't mean you should
- Key point not every point
- Consistent, logical, navigation
- Bold and clear