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1. Executive Summary 

 

Research Context 

• Residential solar panels are a key component of New Zealand’s transition to renewable 

energy, enabling households to actively reduce carbon emissions.  

• Observations by Dave Kelly suggested that Beckenham may have higher solar adoption than 

other Christchurch suburbs, prompting this study to explore local patterns of uptake. 

 

Research Aim 

• Investigate the distribution of rooftop solar panels across selected Christchurch suburbs.  

• Identify which socioeconomic, housing and environmental factors most strongly influence 

residential solar adoption.  

 

Study Area and Data Sources 

• Six Christchurch suburbs were selected to represent a range of socioeconomic deciles. 

• Data sources included 2023 Census information (Stats NZ-Tatauranga Aotearoa [Stats NZ], 

2023) and high-resolution aerial imagery (Toitū Te Whenua - Land Information New Zealand 

[LINZ], 2023). 

• Variables analysed encompassed property ownership, dwelling type, property size, education 

levels, commuting methods, and household income. 

 

Methods 

• Solar panels were detected using a deep learning model in ArcGIS Pro.  

• Detection results were validated using manual checks on 10% of properties and corrected 

using the Rogan and Gladen method to account for false positives and false negatives.  

• Pearson correlation analyses and scatterplots were created in RStudio to identify relationships 

between solar adoption and predictor variables.  

 

Key Findings  

• Beckenham showed the highest solar panel uptake (corrected prevalence 18.17%), confirming 

the initial observation.  

• Strong correlations were observed between solar panel adoption and: 

o Economic factors: Property ownership, single dwelling homes, and property size  

o Education and environmental awareness: Proportion of residents with bachelor’s 

degrees and residents commuting to work by cycling. 

• Spatial patterns indicated consistently high adoption in Beckenham and lower uptake in 

Merivale and Sydenham South 

 

Suggestions for Future Research 

• Refine deep learning model to reduce false positives and false negatives. 

• Increase the size of validation samples to improve model accuracy. 

• Expand analysis to more suburbs and possibly nationwide to increase representativeness. 

• Incorporate qualitative research (surveys, interviews) to understand household motivations. 

• Inform targeted policy initiatives to support solar adoption in areas with low uptake using 

insights from correlations between adoption and predictor variables.  
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2. Introduction 

 

Solar energy generation is a core component of the global transition towards decarbonisation, 

as it enables individuals to contribute directly to reducing fossil fuel reliance. This personal 

adoption capacity makes understanding the reasoning behind implementation significant, 

shaping effective government policy and private-sector business strategies. Accordingly, this 

report aims to investigate the distribution of solar panels across Christchurch and what factors 

are influencing their implementation.  

  

Since the 1980s, advances in technology have seen improvement in materials, production 

scale, and efficiency, driving significant global price reductions (Kavlak et al., 2018). 

Consequently, solar energy is the second most implemented renewable energy source 

worldwide (Pourasl, et al., 2023), with New Zealand’s local implementation mirroring the 

international trend; generation capacity has increased from 8W per person in 2014 to 108W 

per person in 2024 (Energy Efficiency and Conservation Authority [EECA], 2025). 

  

This growth was observed locally by Dave Kelly of the Beckenham Neighbourhood 

Association, who noted a high concentration of solar panels in his suburb, Beckenham, 

(relative to Christchurch) following his own solar system installation. This observation 

guided our project development, alongside his additional interest whether solar panel 

implementation was driven by opportunity—regarding economic and environmental 

viability—or by interest, relating to environmental preferences. 

  

While the financial and environmental benefits of solar energy are well established, there is 

little New Zealand-based research examining the local drivers of adoption. This project has 

sought to address this gap. The following sections outline the supporting literature, research 

methods, and key results, followed by discussion of limitations and recommendations.   
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3. Literature Review  

 

Financial Analysis 

A comprehensive understanding of the drivers behind solar panel implementation requires 

consideration of their financial viability. Technological developments have been the primary 

driver of global solar panel cost reductions (Kavlak et al., 2018), with retail prices falling by 

about 80% in the last 20 years, increasing the feasibility of implementation for many 

consumers (Lightforce Solar, 2025).  

  

For most New Zealand households, solar panel systems typically save $800 - $1200 annually, 

with greater savings achieved through increased household electrification (EECA, 2025). 

Furthermore, the financial returns are influenced less by geographic location—which would 

otherwise favour northern regions—and more by household energy consumptions and 

effective electricity management aligned with demand timing (EECA, 2025; Miller et al., 

2015). The economic context shapes a consumer’s likelihood to adopt solar, aiding the 

explanation behind residential solar panel implementation across Christchurch.   

  

 

Australian Solar Implementation Framework: Case Study 

Australia provides a successful example of how policies can promote residential solar panel 

implementation. Installed on more than 20% of all households, both state and territory 

governments utilised generous feed-in tariffs to drive implementation (Zander et al., 2019). 

These incentives demonstrated that reduced installation costs have the most significant 

influence on solar panel uptake, with highest implementation seen in populations of middle-

range income with higher wealth (Best and Chareunsy, 2022). This finding aligns with 

Dave’s motivation vs. opportunity hypothesis, which expected more economically-concerned 

(middle income), but opportunity-rich (higher wealth) populations to prioritise solar panels. 

Additionally, the Australian context also saw increased implementation in households with 

higher electricity requirements, aligning with the financial analysis (Wen et al., 2023). The 

Australian case reiterates the relevance of motivation vs opportunity drivers, demonstrating 

how financial incentives and household circumstances shape solar adoption. 
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Known Variables Linked to Solar Panel Implementation 

The literature identified economic, social, and environmental factors linked to solar panel 

adoption. A higher net wealth, rather than income, was found to be more indicative of solar 

panel installation (Best et al., 2019), which again highlighted the relevance of including 

economic opportunity in this project. Home ownership was found to be a primary indicator 

for rooftop solar panel uptake, with installation being more common in rural and suburban 

areas than major urban centres (McCarthy and Liu, 2022; Best et al., 2019). This was 

considered when selecting suburbs, excluding built-up areas which may have skewed our 

analysis.   

  

Notably, the literature also recognised that there is gender-based differences in solar panel 

uptake with women more likely to install larger solar systems, reducing the financial return, 

based on stronger environmental preferences (Pereira and O’Connell, 2025). While we were 

unable to carry out any gender-based analysis, it highlighted the relevance of environmental 

ideologies manifesting through renewable energy adoption. These variables demonstrate the 

range of influences shaping residential solar panel adoption, guiding the selection of variables 

which utilised in our analysis.  

  

 

Methods for Solar Panel Identification 

The methods for identifying solar panels in the literature was primarily achieved with 

advanced remote sensing and deep learning models (DLMs). There were limited alternatives 

for identification used, with an Australian-based article aggregating solar panel installation 

data by postcode (Lan et al., 2021), and Khakzad et al. (2024) noting the high labour demand 

when carrying out manual solar panel identification from imagery. This information guided 

the identification methodology, resulting in the decision to use a DLM to identify solar 

panels.   

 

DLMs use semantic segmentation, a computer vision process which separates features within 

images—such as rooftop solar panels. These models are computationally intensive (Adke et 

al., 2021), a matter which was addressed in our project methods by downscaling the extent of 

areas analysed. Further limitations of DLMs lie in their training, which requires a degree of 

locality as regional differences affect the accuracy of identifications (Ren at al., 2022). These 
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methodological considerations informed the development of our identification approach, 

ensuring that practical efficiency is balanced against the accuracy required for reliable solar 

panel detection. 

 

 

4. Methods 

 

Identifying Solar Panels in Our Chosen Areas  

Solar photovoltaic (PV) installations across Christchurch were identified using deep-learning 

object detection within ArcGIS Pro. Manual identification from aerial imagery (Bradbury et 

al., 2016) was initially considered but dismissed due to inefficiency for large-area analysis. 

Object detection was conducted using ESRI’s pre-trained model, applied to 2023 Land 

Information New Zealand (LINZ) aerial imagery. 

  

Initial testing saw the LINZ aerial imagery broke into multiple JPEG files—approximately 30 

per suburb following data sourcing. To address this issue, the ‘Mosaic to New Raster’ tool 

was used to stitch the images together to form one single JPEG file output. While automating 

the process with Model Builder was considered, the Mosaic tool was ultimately chosen for its 

simpler workflow and the groups limited experience with Model Builder.  

  

Both the aerial imagery and property boundaries were clipped to the SA2 areas (Statistical 

Area 2) within Christchurch to improve processing efficiency. A SA2 area is a geographic 

unit used to represent communities that interact socially and economically, typically 

containing 3,000 to 25,000 people (Stats NZ, 2023). Detection times averaged about eight 

hours per suburb on lab computers, making citywide analysis unfeasible. Even on higher-

capacity postgraduate computers, processing Aidanfield took three hours, leading to a 

reduced analysis extent. Reducing the study scope required selecting suburbs that would 

produce meaningful comparisons. Six suburbs were chosen using the deprivation index, 

which ranks areas from 1 (least deprived) to 10 (most deprived) based on factors like income, 

employment, and education. Because lower socio-economic areas often face barriers to solar 

uptake, deciles 8-10 were excluded, with two suburbs selected from deciles 1, 4, and 7. 
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In ArcGIS, the deep-learning-essentials package was installed to run the ESRI Object 

Detection model. The ‘Detect Objects Using Deep Learning’ tool was applied with the 

imagery file and the model file (NZ_solarPanels.dlpk). Most settings were left as default, 

except the detection threshold. Higher thresholds improved accuracy but missed panels, while 

lower thresholds increased false positives. A threshold of 0.6 was chosen to balance accuracy 

and efficiency, as verifying detections was faster than finding missed panels. 

 

Property and SA2 boundaries were sourced from LINZ along with the aerial imagery. These 

layers were used to count detections within individual properties and, at a broader scale, to 

identify properties with solar installations in each SA2 unit. Given the model’s limited 

accuracy, our focus was on identifying properties with PV installations rather than counting 

individual panels. Following detection, a ‘count’ field was added with a value of 1 to the 

output attribute table. Using the ‘Summarise Within’ tool, these identifications were input 

alongside the property boundary layer. Summing the ‘count’ field produced the total number 

of PV detections within an individual property.   

 

Due to inaccuracies in the model’s detections, selection conditions were applied to refine the 

properties classified as having PV installations. Properties with four or more detected panels 

were retained, as most PV systems exceed this number, eliminating 1-3 panel false positives. 

Additional filters removed misclassified property types, such as roads, hydro, and shared land 

titles (e.g., apartments). Properties over 4000 m² were also excluded, as these went beyond 

the scope of typical residential property size.  

 

Once refined, the ‘Summarise Within’ tool was applied to the selected properties and the 

LINZ SA2 boundaries. The output provided the count of qualifying properties within each 

suburb.  

  

 

Validating Counts 

Inaccuracies observed during testing and suburb runs led us to question the model’s 

reliability. To evaluate its accuracy, a Cohen’s Kappa index assessment was calculated for 

Beckenham by manually reviewing all properties to verify detections. True positives were 

marked green, false positives orange, and missed panels (false negatives) pink (Figure 1). 
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Figure 1. Map of Beckenham showing manual checks of solar panel detections. Green = true 

positives (manual + software detection), orange = false positives (software detection only), 

pink = false negatives (manual detection only). True negatives are not shown. Kappa index 

values were used to assess detection agreement. 

  

 

Running the Kappa index (K) produces a value between 0 and 1, where higher values indicate 

stronger agreement between the model and the manual verifications. Counts from both 

datasets (Table 1) were used to create a Kappa calculation which returned a value of 0.54 (see 

Appendix 1 for calculation), indicating moderate agreement (Kumar, 2022).  

  

  



10 
 

Table 1. Manual vs software detections in Beckenham for Cohen’s Kappa index calculations. 

 

 

While the model showed moderate agreement beyond random chance, notable inaccuracies 

remained. To ensure comparability, we needed to confirm that the model’s reliability was 

consistent across all areas. If the model performed consistently, we would be confident 

comparing our results with census data, despite only achieving moderate overall agreement. 

 

Due to time and resource limits, a full Kappa analysis wasn’t feasible for each selected SA2. 

Instead, 10% of properties in each suburb were randomly sampled (with replacement) for 

manual checking, and 100% of detected properties were verified. Results showed clear 

variation in true, false, and missed detections, so correction factors were applied using the 

10% samples. 

 

 

Correcting Counts  

To account for misclassification error in the automated detection of solar panels, the apparent 

prevalence (the proportion of houses identified as containing panels) was adjusted using the 

method proposed by Rogan and Gladen (1978). This correction method uses the sensitivity 

(true positive rate) and specificity (true negative rate) of the detection model, allowing 

estimation of the true prevalence of solar panels in each suburb. The true prevalence was 

calculated as: 

 

𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
(𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1)

(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1)
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This formula corrects for both false positives and false negatives, providing a more accurate 

representation of the actual number of solar-equipped houses. The corrected count was then 

obtained by multiplying the true prevalence by the total number of houses in each suburb: 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑢𝑛𝑡 = 𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑠𝑒 𝐶𝑜𝑢𝑛𝑡 

  

Corrected counts were calculated for each SA2 based on misidentification rates (see 

Appendix 2). Although this increased confidence in the results, discrepancies persisted, likely 

due to the limited 10% validation sample. For instance, Beckenham exhibited low sensitivity 

(0.25) and moderate specificity (0.98), indicating the model missed numerous true positives 

and slightly overestimated negatives, resulting in inflated corrected prevalence estimates. 

Expanding the validation sample would likely enhance the stability of sensitivity and 

specificity estimates, reduce random error, and produce corrected values more closely aligned 

with manual counts (Appendix 3; Dobbin & Simon, 2011). 

 

 

Variable Selection 

To analyse factors influencing solar panel uptake, a dataset was compiled using 2023 Census 

data from Statistics New Zealand (Stats NZ, 2023). The aim was to explore the 

socioeconomic and environmental variables that might shape household decisions to install 

solar panels. By identifying which factors have the strongest relationship with solar adoption, 

we can better understand the social landscape of renewable energy uptake and potentially 

inform targeted outreach or policy initiatives. 

 

Variables that were focused on reflected wealth, education, lifestyle, and environmental 

awareness, all of which are likely to influence solar investment. For example, we examined 

home ownership, capturing the percentage of households that owned their home, held it in a 

family trust, or rented, providing insight into housing stability and capacity to invest in solar 

technology. 

 

Modes of travel to work was also analysed, representing the usual transport method of 

employed residents aged 15 and over. This variable can act as a proxy for environmental 
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awareness, as households with more sustainable commuting patterns may be more receptive 

to renewable energy technologies (Ghosh & Prasad, 2024).  

 

Workplace address data was used to assess whether residents work locally or commute, 

reflecting lifestyle and disposable income. Education was measured by the proportion of 

residents aged 15 and over with Bachelor’s or Level 7 qualifications, as higher education is 

often linked to greater environmental awareness and access to resources for renewable energy 

adoption. 

 

Property size was sourced from Land Information New Zealand imagery (LINZ, 2023), 

providing an estimate of the average property area in each SA2 area. Larger properties 

generally have greater roof space and higher energy consumption from increased 

electrification (Wen et al., 2023), making PV installation both feasible and economically 

attractive. Dwelling type was also considered, with standalone houses offering more 

flexibility for solar installations than joined dwellings. Lastly, household income was 

considered, which is a key indicator of a household’s financial capacity to invest in solar 

technology. Together, these variables provide a well-rounded picture of the conditions that 

may either encourage or limit solar adoption. 

 

Some potentially influential variables, such as electric vehicle ownership, political 

preferences, roof orientation, or property age were unfortunately unavailable at the SA2 level. 

Their absence represents a limitation of this analysis, as they could offer additional insight 

into environmental attitudes and investment capacity. 

 

All collected data was grouped by SA2 area and compiled. The percentage of properties with 

solar installations was used as the response variable, while the variables described above 

served as predictors. 

 

 

Data Analysis in R  

The statistical analysis was carried out using R (RStudio, 2025). To assess the strength of the 

relationships between predictors and solar uptake, a Pearson correlation heatmap was 

generated. This visualisation clearly illustrates the direction and magnitude of linear 
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relationships between variables. Pearson’s correlation coefficient (r) ranges from -1 

(indicating a strong negative correlation) to 1 (a strong positive correlation), with values near 

zero reflecting weak or no linear relationship. 

 

To further explore these relationships, scatterplots were produced for the variables with the 

strongest correlations to solar uptake. The scatterplots allowed observation of patterns more 

closely and comparison of trends between the original and corrected solar panel datasets. 

 

 

5. Results & Discussion 

 

In the following results section, any reference to percentages relates to the respective 

suburb’s proportion of each variable; “Corrected Solar Panel %” is the proportion of homes 

with identified solar panels from the entire suburb’s property number.   

 

 

Correlation Overview 

The correlation heatmap generated in R (Figure 2; Appendix 4) displays the Pearson 

correlation coefficients between each variable in our dataset. The two rows of this heatmap 

represent the correlations between the solar panel data (original and corrected) and the other 

socio-economic variables. Row one illustrates the corrected solar panel data, and the second 

row illustrates the original data. 
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Figure 2. Correlation heat map generated in RStudio illustrating the relationships between 

key predictor variables and the percentage of residential solar panel installations across 

suburbs. The figure includes both the original and corrected datasets, highlighting how 

variable correlations have changed after data correction. 

 

 

Original Dataset 

In the original dataset, the variables most strongly correlated (|r| > 0.6) with solar panel 

adoption were:  

• Percentage of single dwellings (r = 0.94)  

• Percentage of property ownership (r = 0.89)  

• Median property size (r = 0.76)  

• Percentage of renters (r = -0.89)  

• Percentage of joint dwellings (r = -0.95)  

  

Scatterplots (Figure 3a and 3b) illustrate the two strongest correlations. Beckenham and 

Aidanfield exhibited higher proportions of solar panels, single dwelling properties, and 

property ownership, whereas Merivale and Sydenham South had lower values across these 

variables. These trends suggest that home ownership and dwelling type are key enabling 

factors for residential solar uptake; similar findings were identified in the literature with 

urban centres and rental occupancy reducing solar panel implementation (McCarthy & Liu, 

2022; Best et al., 2019).  
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Figure 3a. Scatterplot illustrating the relationship between solar panel presence and 

property ownership rates across suburbs. Each suburb is represented by a distinct point 

colour. Property ownership (%) reflects the proportion of residents who own their homes 

compared to those who rent or occupy through other arrangements. 

 

 



16 
 

 

Figure 3b. Scatterplot showing the relationship between solar panel presence and the 

percentage of single-dwelling homes across Christchurch suburbs. “Single dwelling” refers 

to standalone houses as opposed to attached or joined dwellings. 

 

 

The percentage of solar panels across the original dataset ranged from 3.76% to 6.38% (Table 

2). Beckenham and Aidanfield, both decile 1 suburbs, recorded the highest values, while 

Merivale (decile 4) and Sydenham South (decile 7) were lowest. Notably, New Brighton 

(decile 7) recorded unexpectedly high solar panel presence. Manual inspection revealed that 

this result was due to false detections by the DLM, which was misidentifying polycarbonate 
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roofs and significant shadows in the imagery. As noted by the literature, aerial imagery 

quality and localised model training is essential to DLMs’ accuracy (Ren et al., 2022).  

 

These preliminary results suggest a strong relationship between financial stability and solar 

panel adoption, supporting the hypothesis that opportunity, rather than ideological 

motivation, is a dominant driver for implementation. 

 

Table 2. Original and corrected solar panel presence (%) for six Christchurch suburbs. 

 

 

 

Corrected Dataset 

Following correction using the Rogan and Gladen (1978) method, several correlations 

changed substantially. The strongest relationships (|r| > 0.6) were now observed with:  

• Percentage of people who bike to work (r = 0.80)  

• Percentage of people with bachelor’s degrees (r = 0.67)  

• Percentage of property ownership (r = 0.64)  

• Percentage of people who drive a private vehicle to work (r = -0.62)  

• Percentage of renters (r = -0.64)  

  

Scatterplots (Figure 4a and 4b) illustrated the relationships between biking to work and 

education level and solar panel presence. Beckenham exhibited the highest levels in both 

variables, but Aidanfield recorded low in both variables, contrary to what may have been 

expected from the literature. Likely, biking to work is not a suitable proxy for environmental 

preferences for Aidanfield residents due to the increased distance from the Christchurch 

CBD. With the lowest education level across all the analysed suburbs, Aidanfield may be 

more influenced by the financial benefits of solar panels, or this matter may relate to the 

area’s relatively young age (compared to other Christchurch suburbs). Testing these 

hypotheses behind solar implementation would require additional qualitative research with 

Aidanfield residents, better informing this analysis.   
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Figure 4a. Scatterplot showing the relationship between solar panel presence and the 

percentage of residents who commute to work by bicycle across Christchurch suburbs. 
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Figure 4b. Scatterplot illustrating the relationship between solar panel presence and the 

proportion of residents holding a bachelor’s degree or Level 7 qualification across 

Christchurch suburbs. 

 

 

The corrected data produced a larger range of solar panel presence percentages, from 1.01% 

to 18.17% (Table 2). Beckenham’s 18.17% was over double that of the next closest suburb, 

reinforcing Dave Kelly’s observation that Beckenham displays high solar panel presence. 

Contrastingly, New Brighton dropped to 1.01%, aligning with the expectations for its socio-

economic profile as an area with higher deprivation. 
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These adjusted results shifted the interpretation of solar panel uptake; while the initial results 

indicated financial opportunity and structural feasibility as primary implementation drivers, 

the corrected results moved towards social and behavioural variables driving adoption. 

Drawing upon Dave Kelly’s hypothesis, this sees motivation—rather than opportunity—

driving solar panel implementation in our analysed suburbs.  

  

Overall, the findings indicate that both social-environmental awareness and economic 

opportunity influence solar panel uptake across Christchurch. Beckenham represents the 

intersection of all these variables, with high proportions of every main variable—property 

ownership, single dwelling structure, education level, and bicycle commuting—alongside the 

highest actual proportion of solar panel implementation. 

 

 

Limitations & Future Directions 

While this study generated meaningful insights into solar panel distribution, there were 

several limitations that shaped the scope and depth of the analysis. Recognising these 

limitations highlights clear directions for future research and improvement.  

 

A primary limitation was the scale of our study. Focusing on six suburbs enabled close 

engagement with the data but limited the representativeness of the findings for Christchurch 

city. Expanding the analysis to include additional suburbs—or applying the same approach 

across the wider Canterbury region and nationally, would provide a clearer picture of solar 

uptake patterns and enhance the robustness of any conclusions. 

 

Data availability further constrained the analysis. For each property, only the presence or 

absence of solar panels could be recorded, without detail on system size or capacity. This 

meant all installations were treated equally, despite substantial variation in investment and 

output. Future work could incorporate data from installation records or energy suppliers to 

capture system scale, allowing a gauge of socioeconomic influences, household energy goals, 

and the impact of incentive schemes. 

 



21 
 

Temporal limitations were also present. The aerial imagery used was captured in 2023 

(LINZ, 2023), and as solar adoption has increased since, recent installations are highly likely 

underrepresented, especially in areas with accelerating uptake. Updating the dataset would 

enable the tracking of temporal change more accurately. 

 

Data accuracy also posed additional challenges. Some corrected outputs did not fully align 

with manual verification, particularly in Beckenham, where outliers appeared in scatterplots. 

Future studies could benefit from more refined classification methods, larger training 

datasets, or the integration of machine learning approaches to improve detection reliability. 

Further, the use of 10% samplings has limited the representativeness of the data, reducing the 

likelihood of capturing outliers and unique patterns. 

 

Another interpretive limitation was the reliance on proxy variables such as education level 

and cycling rates to represent environmental awareness. Variables used to represent 

environmental preferences, such as cycling commute and education level, are indirect 

indicators. While higher education often correlates with pro-environmental attitudes (Meyer, 

2015), the relation is not causal, and cycling may reflect drivers beyond environmental 

motivation (Ibrahim & Marzuki, 2025). These proxies offer useful signals but cannot 

comprehensively capture the attitudes driving solar adoption. Combining quantitative GIS 

analysis with qualitative data through surveys, interviews, or focus groups, would help bridge 

this gap, revealing the social and behavioural dimensions driving renewable energy decisions. 

 

Finally, while this study was grounded in spatial and statistical analysis, future iterations 

could more actively link these findings to policy design. Identifying variables associated with 

low uptake could inform targeted interventions such as subsidies, community outreach, or 

streamlined consent processes. Suburbs with high solar potential but limited adoption could 

be prioritised for education and incentive programmes. 

 

Overall, these limitations point toward opportunities for growth. By expanding analysis area, 

refining the data collection, integrating qualitative perspectives, and connecting findings to 

policy applications, this project could evolve into a study of solar adoption across 

Christchurch and beyond. Such research would contribute not only to academic 

understanding but also to practical efforts supporting New Zealand’s renewable energy 

transition. 
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6. Conclusion 

 

This research investigated which Christchurch suburbs have the highest prevalence of solar 

panels and the factors influencing their distribution. Using deep-learning detection, census 

data, and statistical analysis, the study found that both opportunity and motivation contribute 

to patterns of solar adoption. Suburbs with higher levels of home ownership, single-dwelling 

properties, residents cycling to work, and education displayed greater uptake.  

 

When correction methods were applied to account for detection inaccuracies, behavioural and 

social variables–such as higher education levels and sustainable commuting—became more 

influential. This shift suggests that while financial capacity and property characteristics allow 

the ability to install residential solar, environmental awareness and lifestyle choices are key in 

driving adoption.  

 

Although this project was limited by scale, data accuracy, and the absence of qualitative 

perspectives, there is a lesson learned in the value of combining spatial analysis with data to 

understand renewable energy behaviour at a local level. Expanding the scope to include more 

suburbs or incorporating surveys would provide more depth and reliability in future research. 

 

Ultimately, this report shows that increasing solar adoption in Christchurch and across New 

Zealand requires more than financial incentives alone. It calls for community engagement, 

education, and policy frameworks that make solar energy both accessible and desirable. 

Combining opportunity with motivation, Christchurch can continue to lead by example in the 

transition toward a low-carbon, community-driven energy future.  
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8. Appendix 

 

Appendix 1. Cohen's Kappa Index Calculation. 

P0 = Agree / Total 
P0 = 888/935 = 0.95 
K = (P0 - Pe) / (1 - Pe) 
Pe = (63/935) * (44/935) + (872/935) * (891/935)) = 0.89 
K= (0.95-0.89) / (1-0.89) = 0.54 
Kappa > 0.4 = Moderate 
 

 

Appendix 2. Adjusted Apparent Prevalence Method. 

Worked Example in Beckenham  
Apparent prevalence 0.06 
Sensitivity 0.25 
Specificity 0.98 
Total houses 831 

  
True Prevalence = (0.06 + 0.98 − 1) / (0.25 + 0.98 − 1) = 0.18 
Corrected Count = 0.18 x 831 = 151 Houses 
 

 

Appendix 3. Corrected numbers of solar panel detections based on a 10% manual sample 

from each suburb. 

 

 



24 
 

 
Appendix 4. Correlation heat map generated in RStudio illustrating the relationships 

between all predictor variables and the percentage of residential solar panel installations 

across suburbs. The figure includes both the original and corrected datasets, highlighting 

how variable correlations have changed after data correction. 
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