Ken Morison

Associate ProfessorKen Morison

Associate Professor
Director of Intermediate and First Professional Year Studies
Civil Mechanical E542
Internal Phone: 93818

Qualifications & Memberships

Research Interests

My core focus is dairy & food process design. Design of dairy processes can begin at a very general level with decisions about product mix and overall flowsheets. This is followed by the design of individual processes and many of the designs, such as evaporators and membrane filtration plants, can be done from engineering fundamentals. One aim of this research is to develop design methodologies for as many aspects of dairy processing as possible. Such designs often require more fundamental scientific information, especially physical properties. Recently projects to obtain such information include falling-film minimum wetting rates, surface tension, contact angle, viscosity of dairy products.Some processes in the dairy industry can be understood better by developing models. Models of ultrafiltration, cheese production and evaporator flows have been developed to show which parts of a design are most important. This work will be extended to cover many other dairy processes.Project themes include:- Design of dairy processes- Physical properties of dairy products- Falling film wetting in evaporators- Protein ion-exchange- Dielectric properties of foods- Ultrafiltration and reverse osmosis: membrane failure and fouling- Properties of concentrated sugar solutions including honey- Crystallisation from viscous solutions

Research/Scholarly/Creative Works

  • Morison KR. (2015) Reduction of fouling in falling-film evaporators by design. Food and Bioproducts Processing 93 211 - 216.
  • Morison KR. and Broome SR. (2014) Upward vapour flows in falling film evaporators and implications for distributor design. Chemical Engineering Science 114 1 - 8.
  • Herritsch A., Rahim EA., Fee CJ., Morison KR. and Gostomski PA. (2013) An interactive virtual tour of a milk powder plant. Chemical Engineering Education 47(2): 107 - 114.
  • James A., Morison K. and Todd S. (2013) A mathematical model of the defence mechanism of a bombardier beetle. Journal of the Royal Society Interface 10(79).
  • Kabaliuk N., Jermy MC., Morison K., Stotesbury T., Taylor MC. and Williams E. (2013) Blood drop size in passive dripping from weapons. Forensic Science International 228(1-3): 75 - 82.