Reagan Chandramohan

Post Doctoral FellowReagan Chandramohan

Civil & Natural Resources Engineering E309
Internal Phone: 94143

Research Interests

The broad objective of my research is to minimize human and economic losses incurred during earthquakes by enhancing the seismic safety of our built environment. My research seeks to advance the state-of-the-art in structural risk and reliability assessment using modern high-performance computing tools and statistically rigorous structural analysis techniques. I employ large-scale numerical simulations to answer fundamental questions relating the characteristics of earthquake ground motion to the nonlinear dynamic response and collapse behavior of structures.

Recent Publications

  • Chandramohan R., Ma Q., Wotherspoon LM., Bradley BA., Nayyerloo M., Uma SR. and Stephens MT. (2017) Response of instrumented buildings under the 2016 Kaikoura earthquake. Bulletin- New Zealand Society for Earthquake Engineering 50(2): 237-252.
  • Chandramohan R., Baker JW. and Deierlein GG. (2016) Impact of hazard-consistent ground motion duration in structural collapse risk assessment. Earthquake Engineering and Structural Dynamics 45(8): 1357-1379. http://dx.doi.org/10.1002/eqe.2711.
  • Chandramohan R., Baker JW. and Deierlein GG. (2016) Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthquake Spectra 32(2): 927-950. http://dx.doi.org/10.1193/122813EQS298MR2.
  • Chandramohan R., Baker JW. and Deierlein GG. (2017) Physical mechanisms underlying the influence of ground motion duration on structural collapse capacity. Santiago, Chile: 16th World Conference on Earthquake Engineering, 9-13 Jan 2017.
  • Chandramohan R., Baker JW. and Deierlein GG. (2014) Hazard-consistent ground motion duration: Calculation procedure and impact on structural collapse risk. In NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering http://dx.doi.org/10.4231/D30G3GZ7T.