MATH416-12S2 (C) Semester Two 2012

Differential Systems

0.1250 EFTS
09 Jul 2012 - 11 Nov 2012

Description

Differential Systems

Moving frames and exterior differential systems form a natural backdrop for the study of problems in geometry and partial differential equations. In particular, most (if not all) physical systems exhibit symmetry and so embody geometric content in the differential equations that describe the physics.  These systems are naturally described in the coordinate free approach of moving frames. Integrability conditions, the "size" of the solution space and the existence of "singular" branches of the solution space for systems of partial differential equations can be readily found in the moving frame approach.

This course will introduce moving frames and exterior differential systems with an emphasis on the conceptual and operational issues. The "standard" vector calculus will be revisited with the aid of differential forms. Their application to simple geometric problems and the reformulation of Maxwell's equations as an exterior differential system will be considered. If time permits (and depending on student interest) either the exterior differential system formulation of Einstein's field equations or application of moving frames to computer recognition of objects will be considered.

Prospective students should have familiarity with partial differential equations and vector calculus.

Pre-requisites

Subject to approval of the Head of School.

Lectures
Streams Day Time Where Notes
Stream 01 Wednesday 1:00pm-2:00pm Erskine 441 9 Jul - 19 Aug,
3 Sep - 14 Oct
Thursday 4:00pm-5:00pm Erskine 441 9 Jul - 19 Aug,
3 Sep - 14 Oct

Course Coordinator / Lecturer

Mark Hickman

Fees

Domestic fee $788.00

International fee $3,588.00

For further information see Mathematics and Statistics.

All MATH416 Occurrences