EMTH119-18S2 (C) Semester Two 2018

Engineering Mathematics 1B

15 points, 0.1250 EFTS
16 Jul 2018 - 18 Nov 2018

Description

A continuation of EMTH118. Topics covered include methods and Engineering applications of calculus, differential equations, and linear algebra, along with an introduction to probability. This course is a prerequisite for many courses in engineering mathematics and other subjects at 200 level.

EMTH119 consolidates concepts from EMTH118 and introduces more advanced ideas in calculus and linear algebra. It includes applications of this mathematics to applied and engineering problems.
It also incorporates some study of probability. It is a prerequisite for many courses in engineering mathematics and other subjects at the  200-level.

Topics:
First-order ordinary differential equations with applications. Review of complex numbers. Second-order ordinary differential equations with applications.
Introduction to convergence of sequences and series. Applications of differentiation to approximation. Approximation by Taylor polynomials. Landau’s notation and order of magnitude.
Determinants, eigenvalues and eigenvectors.
Probability. Sets and probability. Discrete random variables. Continuous random variables. Expectation, mean, and variance.
Techniques and applications of integration. Integration of rational functions. Arc length. Improper integrals.
Multivariate differentiation and classification of critical points.

Learning Outcomes

Students who have succeeded in this course will be able to

  • use calculus, algebra or probability to
      - evaluate integrals arising in mathematics and engineering
      - solve first and second order differential equations
      - find Taylor approximations to functions
      - calculate mean and variance of random variables and solve probability problems arising in engineering applications
      - calculate determinants, eigenvalues and eigenvectors
      - investigate the geometry of multivariable functions and classify critical points
  • demonstrate understanding of the mathematical topics in the course by
      - giving definitions of fundamental concepts
      - competent manipulation of functions, matrices, random variables and complex numbers
      - choosing effective solution techniques for given problems
      - verifying correctness of mathematical calculations
  • describe and interpret the meaning of mathematical solutions to engineering problems (particularly differential equations and random variables)
  • synthesise material from different sections of course (for example, using integration techniques and limit evaluation to solve differential equation or probability problems)
    • University Graduate Attributes

      This course will provide students with an opportunity to develop the Graduate Attributes specified below:

      Critically competent in a core academic discipline of their award

      Students know and can critically evaluate and, where applicable, apply this knowledge to topics/issues within their majoring subject.

Pre-requisites

Restrictions

MATH103, MATH109, MATH199

Timetable 2018

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Monday 08:00 - 09:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
02 Monday 12:00 - 13:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
Lecture B
Activity Day Time Location Weeks
01 Tuesday 08:00 - 09:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
02 Tuesday 12:00 - 13:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
Lecture C
Activity Day Time Location Weeks
01 Wednesday 08:00 - 09:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
02 Wednesday 12:00 - 13:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
Lecture D
Activity Day Time Location Weeks
01 Thursday 08:00 - 09:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
02 Thursday 12:00 - 13:00 A1 Lecture Theatre 16 Jul - 26 Aug
10 Sep - 21 Oct
Tutorial A
Activity Day Time Location Weeks
01 Monday 09:00 - 10:00 Jack Erskine 241 23 Jul - 26 Aug
10 Sep - 21 Oct
02 Monday 09:00 - 10:00 Ernest Rutherford 260 23 Jul - 26 Aug
10 Sep - 21 Oct
03 Monday 10:00 - 11:00 Ernest Rutherford 260 23 Jul - 26 Aug
10 Sep - 21 Oct
04 Monday 10:00 - 11:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
05 Monday 11:00 - 12:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
06 Monday 15:00 - 16:00 Ernest Rutherford 141 23 Jul - 26 Aug
10 Sep - 21 Oct
07 Monday 16:00 - 17:00 Ernest Rutherford 465 23 Jul - 26 Aug
10 Sep - 21 Oct
08 Monday 16:00 - 17:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
09 Tuesday 08:00 - 09:00 Jack Erskine 446 23 Jul - 26 Aug
10 Sep - 21 Oct
10 Tuesday 09:00 - 10:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
11 Tuesday 09:00 - 10:00 Jack Erskine 242 23 Jul - 26 Aug
10 Sep - 21 Oct
12 Tuesday 10:00 - 11:00 Jack Erskine 445 23 Jul - 26 Aug
10 Sep - 21 Oct
13 Tuesday 11:00 - 12:00 Ernest Rutherford 260 23 Jul - 26 Aug
10 Sep - 21 Oct
14 Tuesday 13:00 - 14:00 Ernest Rutherford 260 23 Jul - 26 Aug
10 Sep - 21 Oct
15 Tuesday 14:00 - 15:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
16 Tuesday 16:00 - 17:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
17 Wednesday 09:00 - 10:00 Jack Erskine 241 23 Jul - 26 Aug
10 Sep - 21 Oct
18 Wednesday 11:00 - 12:00 Jack Erskine 445 23 Jul - 26 Aug
10 Sep - 21 Oct
19 Wednesday 12:00 - 13:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
20 Wednesday 13:00 - 14:00 Jack Erskine 241 23 Jul - 26 Aug
10 Sep - 21 Oct
21 Wednesday 14:00 - 15:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
22 Wednesday 16:00 - 17:00 Jack Erskine 242 23 Jul - 26 Aug
10 Sep - 21 Oct
23 Wednesday 16:00 - 17:00 Ernest Rutherford 260 23 Jul - 26 Aug
10 Sep - 21 Oct
24 Wednesday 17:00 - 18:00 Ernest Rutherford 225 23 Jul - 26 Aug
10 Sep - 21 Oct
25 Thursday 09:00 - 10:00 Jack Erskine 241 23 Jul - 26 Aug
10 Sep - 21 Oct
26 Thursday 09:00 - 10:00 Jack Erskine 235 23 Jul - 26 Aug
10 Sep - 21 Oct
27 Thursday 12:00 - 13:00 Jack Erskine 242 23 Jul - 26 Aug
10 Sep - 21 Oct
28 Thursday 13:00 - 14:00 Ernest Rutherford 141 23 Jul - 26 Aug
10 Sep - 21 Oct
29 Thursday 14:00 - 15:00 Ernest Rutherford 140 23 Jul - 26 Aug
10 Sep - 21 Oct
30 Thursday 14:00 - 15:00 Jack Erskine 121 23 Jul - 26 Aug
10 Sep - 21 Oct
31 Thursday 15:00 - 16:00 Jack Erskine 241 23 Jul - 26 Aug
10 Sep - 21 Oct
32 Thursday 15:00 - 16:00 Jack Erskine 111 23 Jul - 26 Aug
10 Sep - 21 Oct

Examination and Formal Tests

Test A
Activity Day Time Location Weeks
01 Monday 18:30 - 20:00 A1 Lecture Theatre (20/8)
A2 Lecture Theatre (20/8)
A3 Lecture Theatre (20/8)
C1 Lecture Theatre (20/8)
C2 Lecture Theatre (20/8)
C3 Lecture Theatre (20/8)
E8 Lecture Theatre (20/8)
E9 Lecture Theatre (20/8)
20 Aug - 26 Aug
Test B
Activity Day Time Location Weeks
01 Wednesday 09:00 - 09:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
02 Wednesday 09:30 - 10:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
03 Wednesday 10:00 - 10:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
04 Wednesday 10:30 - 11:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
05 Wednesday 11:00 - 11:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
06 Wednesday 11:30 - 12:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
07 Wednesday 13:00 - 13:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
08 Wednesday 13:30 - 14:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
09 Wednesday 14:00 - 14:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
10 Wednesday 14:30 - 15:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
11 Thursday 09:00 - 09:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
12 Thursday 09:30 - 10:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
13 Thursday 10:00 - 10:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
14 Thursday 10:30 - 11:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
15 Thursday 13:00 - 13:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
16 Thursday 13:30 - 14:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
17 Thursday 14:00 - 14:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
18 Thursday 14:30 - 15:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
19 Thursday 15:00 - 15:30 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct
20 Thursday 15:30 - 16:00 Jack Erskine 035 Lab 2 6 Aug - 12 Aug
17 Sep - 23 Sep
8 Oct - 14 Oct

Course Coordinator / Lecturer

Gunter Steinke

Course Administrator

Phillipa Gourdie

Lecturers

Carl Scarrott and Phillipa Gourdie

Textbooks

Recommended reading:
Stewart, James: Calculus Early Transcendentals. 8th edition. ISBN: 9781305272378

Indicative Fees

Domestic fee $937.00

International fee $5,125.00

* Fees include New Zealand GST and do not include any programme level discount or additional course related expenses.

For further information see Mathematics and Statistics.

All EMTH119 Occurrences