Thermo-chemical Conversion R&D Activities at CRL Energy - Including the Gasification of Coal and Biomass for Purified Hydrogen Production

Tana Levi

IEA Workshop - Bioenergy Task 33 14th April 2011

About CRL Energy Limited

- Coal Association of New Zealand
- ➤ Staff of 50
- > Main facility at Lower Hutt,
 - offices in:
 - Christchurch and Hamilton
 - laboratories in:
 - Greymouth, Lyttelton and Buller
- Technology
- Geology
- Environment
- Analytical
- SpectraChem

Thermo-chemical Conversion Methods

Thermo-chemical Conversion Pathways

Torrefaction

- Torrefaction of biomass for energy densification and improved storage
 - Pre-treatment step in pyrolysis and gasification
 - Temperature range 200-300°C
 - Constructing small scale test rig
 - Can also operate at carbonization temperatures

Carbonisation

- Conversion mode that produces highest yields of biochar
- Processes increases energy density of biomass
- Improves storage and handling properties of solid products
- Applications for carbonisation include:
 - Production of slurry fuels
 - Biochar for soil enhancement
 - Extraction of complex chemicals

> Designed for use on:

- Bagasse, Bio-solids, Seaweed, Wood

> Target specific product species

acid

Biomass Pyrolysis

- > 6 year programme (2009 2015)
- Pyrolysis of biomass for production of biobitumens
 - Design and testing using bench scale pyrolyser
 - Up-scaling to proof of concept scale
 - Road testing

Fluidized bed fast pyrolysis rig - convert sawdust into solid and liquid products

Bio-bitumen Pathway

Solid Fuel Combustion

Fuel Performance Evaluation
Emissions Testing
On-Site Boiler Optimisation
Plant Design

CRL Energy Hydrogen and Coal Gasification Research Programme

The CRL Energy Research Programme

- Stage 1: Understanding gasification of NZ coals (1996-2002)
- Stage 2: Design, Construction and Commissioning a Coal to Hydrogen Technology Package (2002-2008)
 Stage 3: Introducing Biomass and electrolysis into the Mix (2008-2012)

Hydrogen in NZ's Energy Future

Why Are We Looking at Biomass?

> NZ traditionally uses renewables 2009 70% electricity and 35% primary energy By 2020 energy landscape must transform Low carbon and sustainable energy sources > Hydrogen store excess renewable off peak electricity

Transport sector undergo transformation

The Current Energy System

An Energy System With Hydrogen

Alignment of CRL Energy's Research Programmes

Recoverable Energy Reserves

Assuming 350 PJ needed:

Renewables 120 PJ pa

> Oil and condensate – 402 PJ

Natural Gas - 2300 PJ
 Future discoveries estimated at 80 PJ pa

Coal – 150,000 PJ
 – Sufficient to meet energy demands for 100s of years

New Zealand Coal Resources

NZ has 10 times more coal per capita than the average for the rest of the world

➤ 9 billion tonne reserve

5 million tonne production p.a.

75% lignite, 15% sub-bituminous,
 10% bituminous

Feasibility of Biomass

Hydrogen and Clean Energy Technology Package

Four year programme

10 milestones 8 relate to gasifier and modifications 2 relate to improving syngas clean up

Bench scale gasifier tests on coal/biomass blends Modelling char reactivity and product streams

Proof of Concept O₂ blown coal/biomass gasifier + electrolyser

Hydrogen and Syngas – Flexible, Valuable Products

Why Coal: Biomass Gasification ?

Biomass gasification is a carbon neutral process
 But a limited resource

Coal gasification is not a carbon neutral process
 But is a huge natural resource

- Energy security
- Inexpensive
- Regular quality

Why Coal: Biomass Gasification ?

Enables a transition between fossil and plantation biomass technologies

Use a product that may otherwise be disposed of as waste - e.g. timber milling plant waste, corn husks, municipal waste, chicken waste

Synergies

U of C Contract: What happens to gasification behaviour when coal is added to biomass?

- Using an abundant fuel to augment a lower CV, less abundant one
- CRL Energy Contract: What happens to gasification behaviour when biomass is added to coal?
 - Using a carbon neutral fuel to reduce carbon footprint

Testing hydrogen separation membrane technologies

		Bench scale coal biomass char reactivities									
				Effect of Ca on reactivities						6	
	Modelling										
Pre 2008	20	08	2009		2010		2011			2012	
Air 50 kw gasifier lignite		Air 50 kw gasifier lignite, sub-bit woody biomass		E li W	30%O ₂ 50 kw gasifie lignite, sub-bi woody biomas						
						+/- 3 fror elec	30% C n sma trolys) ₂ III er	10 fre	0% O ₂ om big ctrolyser	
New 100%O ₂ or a 200 kw gasifier designed Running on lignite, s woody biomass						air ed and bu sub-bit	uilt				

Questions around Co-gasification

Coal:Biomass Co-gasification: Issues

Biomass Selection

*E. nitens*Short rotation forestry
Efficient use of land
Difficult to prepare

> P. radiata

- Longer rotation
- Available
- Easy to prepare

Making Coal: Biomass Pellets

- Enables regular feedstock quality
 - Reproducible results
- Small size
 - Easy for handling
 - Easy to transport and store

- Fluidise well
 - Avoids segregation
 - Steady gaseous out stream

Making Coal: Biomass Pellets

Make up coal:biomass blends (0, 20%, 40%, 50%, 60%, 80% 100%) by weight.

Fuels used: *E. nitens*, *P radiata*, Lignite, Subbituminous coal

Fest that pellets are strong enough to feed to gasifier

Making Pellets - Methodology

- > Air dry biomass to approximately 3% moisture
- Grind biomass and lignite/sub-bituminous < 1.0 mm</p>
- Biomass and lignite/sub-bituminous ball milled with binder (water and 9% wt flour)
- Ideal moisture content level of blends is ~24%
- Feed mixture into hot roller press pelletizer (2 passes)
- ➢ Pellets 8-10 mm Ø, 10 30 mm long
- Pellets dropped x 10, 2 m onto concrete floor

Things did not always go quite to plan !!!

Analysis of Feed Stocks

			Dry Basis							
CRL Ref	Description		Ash ASTM D1102	Vols ISO 562	Fixed Carbon	Total Carbon SC144-DR	Total Carbon	Total Hydrogen	Total Nitrogen	
93/000	Pine	%	0.37	84.6	15.0		51.2	5.87	<0.03	
93/001	e niten	%	0.40	86.2	13.4		50.2	5.89	<0.03	
93/002	Lignite	%	6.1	51.8	42.2		62.6	4.50	0.68	
93/003	Sub-bit	%	6.3	44.7	49.1		68.8	4.75	1.19	
93/004	L-P 20/80 Char	%	4.9	3.2	91.8	90.4			27 5	
93/005	L-P 50/50 Char	%	8.3	4.3	87.4	86.2			1	
93/006	L-P 80/20 Char	%	10.7	7.0	82.3	83.9				
93/007	S-P 20/80 Char	%	5.2	4.8	90.1	88.8			30	
93/008	S-P 50/50 Char	%	8.7	9.7	81.6	83.7			8	
93/009	S-P 80/20 Char	%	10.1	3.3	86.6	86.1			27	
93/010	100% Pine Char	%	1.9	2.1	95.9	94.7			63	

Bench Scale Gasifier

Determine reactivities of mixed chars
 Calculate rate at which char is converted to carbon containing gases
 Identify time to 50% conversion
 Identify syngas composition at that time

BENCH SCALE GASIFIER

Sub-bituminous

Lignite *P. radiata*

E. nitens

Lignite increases reactivity

Lignite / P. radiata

Lignite / E. nitens

Sub-bituminous / P. radiata

Sub-bituminous / E. nitens

Effect of Gasification Temperature on Reactivity

Effect of Gasification Temperature on H_2/CO Ratio

Temperature [C] Coal content [%]

Calcium Effect

Lignite char reactivity is
strongly dependent on
presence of ionically
bound calcium

	T ₅₀ (min)	
NZ Lignite	22.8	
German Brown Coal	33.5	
Australian Brown Coal	33.4	

	T ₅₀ (min)	H ₂ /CO
Lignite	22.8	17
Acid Washed	99.5	2.8
Calcium Reloaded	22.5	17

Effect of Calcium on Lignite Reactivity and Syngas Composition

Modelling Char Reactivity

Model based on:

- Gasification reaction kinetics
- Transportation of gas molecules in char matrix
- Mass balance equations in solid char

Model considers:

- Gasification agent (steam) diffusion into particle through pores
- Chemical reactions among gases (steam, product gases)
- Chemical reactions between gases and char matrix
- Product gas transfer through char

Predicted v Actual Char Conversion

E. nitens char reactivity lies
 between lignite and sub bituminous coal

- Overall reaction rate \$\geq\$ with \$\geq\$
 in coal:biomass ratio
- Structural properties affect
 reaction rate
- Internal surface area of lignite char larger (more porous) than *E. nitens*

Differences Between Coal & Biomass Char Conversion

The CRL Energy Gasifier

Gasifier Detail

Bed: depth of 300 mm Air flow in: 60 m³/h Gas flow gasifier exit: 130m³/h Coal size: 3 – 10 mm Coal feed: 18 kg/h Steam feed: 5 kg/h Temperature: 950 – 980 °C Control system: Delta V

The Fluidised Bed Gasifier

Operation

- Time to steady gasification ~ 2 h
- Reliable optimal operation conditions
- Advanced control system
- Regular quality syngas
 - 15% H₂, 15% CO₂, 12% CO, <1% CH₄ plus N₂.
- -2000 h + operation
- Continuous (1 week) operation

Particulate Removal

2 stage particulate removal system– High efficiency cyclone (95%)

– Venturi scrubber (5%)

Low yields of tars and condensables recovered

Syngas Clean-up Line Sulfur Gases

X

X

> Amine scrubber (MDEA)

Proprietary scavenger

Packed column, counter flow caustic wash

Corrosion

Effect of Biomass Addition on Gasifier Control

100% lignite

20% P. radiata – 80% sub-bituminous

20% E. nitens – 80% lignite

20% E. nitens – 80% sub-bituminous

Effect of Biomass Addition on Syngas Composition

Fuel	% Gas				
	H ₂	CO	CO ₂	CH ₄	
100% lignite	15	12	15	<1	
80% lignite – 20% <i>P.</i> radiata	9	11	15	1.5	
80% lignite – 20% <i>E.</i> <i>nitens</i>	8	10	14	1.5	
100% sub-bituminous coal	11	15	12	1	
80% sub-bituminous coal – 20% <i>P. radiata</i>	14	16	13	2	
80% sub-bituminous coal – 20% <i>E. nitens</i>	11	13	14	1.5	

> Coal/Biomass + $O_2 = CO_2$ + heat

Coal/Biomass + heat = C (char) + volatiles

> C + H₂O = CO + H₂

 $> CO_{2} + C = 2CO \qquad ($ $> CO + 3H_{2} = CH_{4} + H_{2}O \qquad ($ $> CO + H_{2}O = CO_{2} + H_{2} \qquad ($ $> CH_{4} + H_{2}O = CO + 3H_{2} \qquad ($

(boudouard)(methanation)(WGS)(steam reforming)

Syngas Clean-up Line Water Gas Shift Reactor

- $> CO + H_2O \leftrightarrow H_2 + CO_2 \sim 40 \text{ kJ/kg-mol}$
- Single high temperature catalyst bed (340 to 360°C)
- Iron Oxide Catalyst
 Gas flow rate 5.0 2.4 m³/h
- Regular quality syngas
 - 22% H₂, 20% CO₂, 5% CO, <1% CH₄

Syngas Clean-up Line Hydrogen Purification

Palladium membrane, developed by ECN, NL 10 bar, 350°C, >99% hydrogen

Syngas Clean-up Line High Pressure High Temperature Gas Separation Unit

Fuel Cell

- > Alkaline fuel cell (2.5 kW) assembled
- Developed by IRL, NZ
- > 2 bar H_2 buffer storage system feed
- > Overall electrical conversion efficiencies 50% HHV

- > Fuel (H_2) is fed into the anode
- > Oxidant (O_2 air) is fed into cathode
- React in presence of KOH
- ≻ H₂ -> 2H+ + 2e-
- > 2H+ + 2e- + O₂ -> H₂O

O₂ Blown Fluidized Bed Gasifier with Integrated Electrolyser

Develop new technology of oxygen blown cofired gasifier with integrated electrolyser for production of low carbon footprint syngas, synfuels and H_2 from New Zealand's coal and biomass resources

Specifications

50kw unit Fluidized bed O_2 or air blown Biomass capability (up to 45%) Modular design Max working temperature 1000°C Ambient pressure system Regular quality syngas (> 20% H_2)

ASU 15-20% electrical output

- Roaring 40s
- Use of green H₂ and O₂ with biomass and coal interesting
- Green input reduce process emissions
 If CCS high minimise CO to CO₂ shift and produce as much H₂ for optimum FT

Benefits and Barriers

Electrolysis provides a relatively simple means of producing high purity O₂ and H₂ in a ratio of 1:2

The technology is expensive
The cost of feedstock (electricity) is high
The production efficiency is presently of the order of only 60% HHV.

Benefits and Barriers

Recent advances in materials technology can potentially reduce these barriers
 Changing environment of electricity supply + improvements could alter economics in high value O₂ and H₂ applications

Integrated Electrolyser

Integrated Electrolyser

- Operates at nominal 50Vdc
- Fully self contained
- > Wide operating range
- Fast turn-up and turn-down
- > O_2 and H_2 at required quality
- > Produces 0.4 Nm³/hr O₂ (0.8Nm³ H₂)
- Very low peripheral power demand
- Efficiency of 70% HHV without any special electrode surface preparation
- Target module level efficiency of > 80%HHV

2009 - To Date

PhD studentMasters Student

2 Journal papers
4 Conference papers and presentations
3 Workshops

Developed several international collaborations

Future Work

Prove concept - complete gasifier-electrolyser integration

- Complete test run schedule with 100% O₂ and 45% biomass
- Develop new test programme

Acknowledgements

Ministry for Science and Innovation, New Zealand

- Industrial Research Limited, New Zealand
- Prof. Shusheng Pang, University of Canterbury, New Zealand
- ECN, The Netherlands
- > Argonne National Laboratory, USA
- Solid Energy, New Zealand
- Genesis Energy, New Zealand
- Carter Holt Harvey, New Zealand
- BP, New Zealand

How Much Hydrogen will we Need?

1.2 – 1.75 million tonnes of hydrogen p.a. by 2050 (144 – 210 PJ) to meet predicted land transport demand

Primary domestic energy sources

- Coal
- Natural Gas
- Renewables

Gasification – The Key Enabling Technology

 New Zealand lignites very well suited to new advanced efficient gasification process
Generation of 1.2 to 1.7 million tonnes of hydrogen requires gasification of 10 to 15 million tonnes of lignite.

