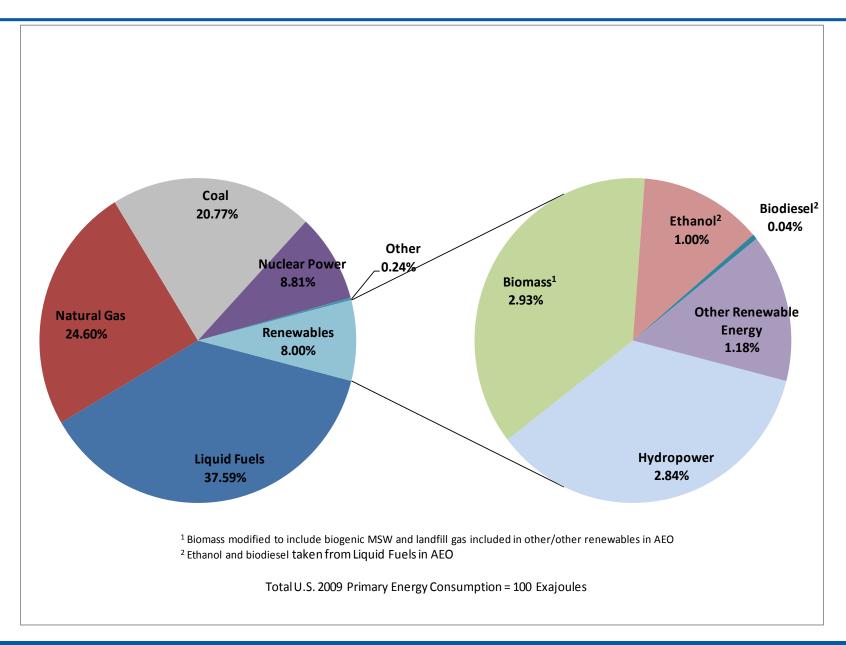


Biomass Gasification R&D Activities in North America

IEA Task 33 Workshop Christchurch, NZ


Richard L. Bain

Apr 14, 2011

Presentation Outline

U.S. Primary Energy Consumption in 2009

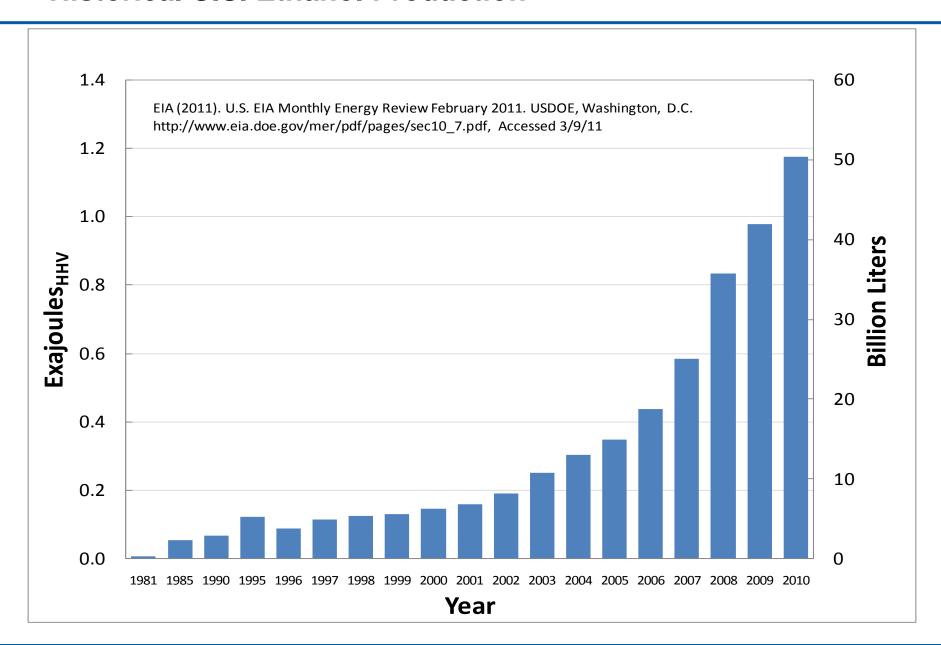
Current Biofuels Status

Biodiesel – 2.85 billion gallons/yr nameplate capacity (April 2011)¹

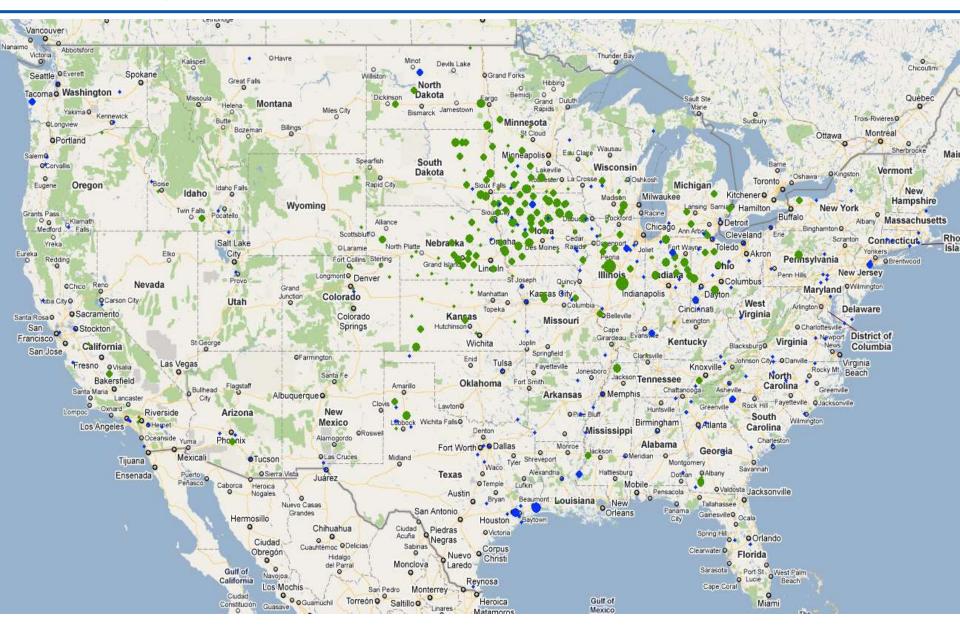
Mar 2011 Rack Price – 478.06 cents/gal

Corn ethanol

- 218 commercial plants²
- 14.554 billion gal/year nameplate capacity
- 11.987 billion gal/yr. production²
- Additional 0.27 billion gal/yr planned or under construction
- Mar 2011 Rack Price 270.48 cents/gal


Key DOE Goals

- 2012 goal: cellulosic ethanol \$1.51/ETOH gallon
- 2022 goal: 36B gal Renewable Fuel; 21B gal "Advanced Renewable Fuel" – 2007 Energy Independence and Security Act
- 2030 goal: 60 billion gal ethanol (30% of 2004 gasoline)



Historical U.S. Ethanol Production

Existing Biofuels Facilities

Biopower Status

2010 Capacity - 10.5 GW

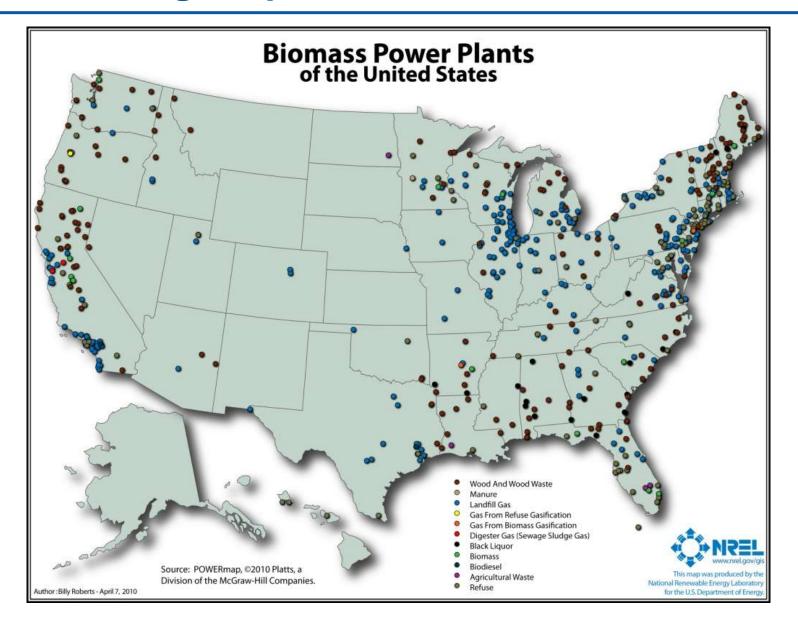
- 5.6 GW Electric Power Sector
- 5.2 GW End Use Generators

2010 Generation – 55TWh

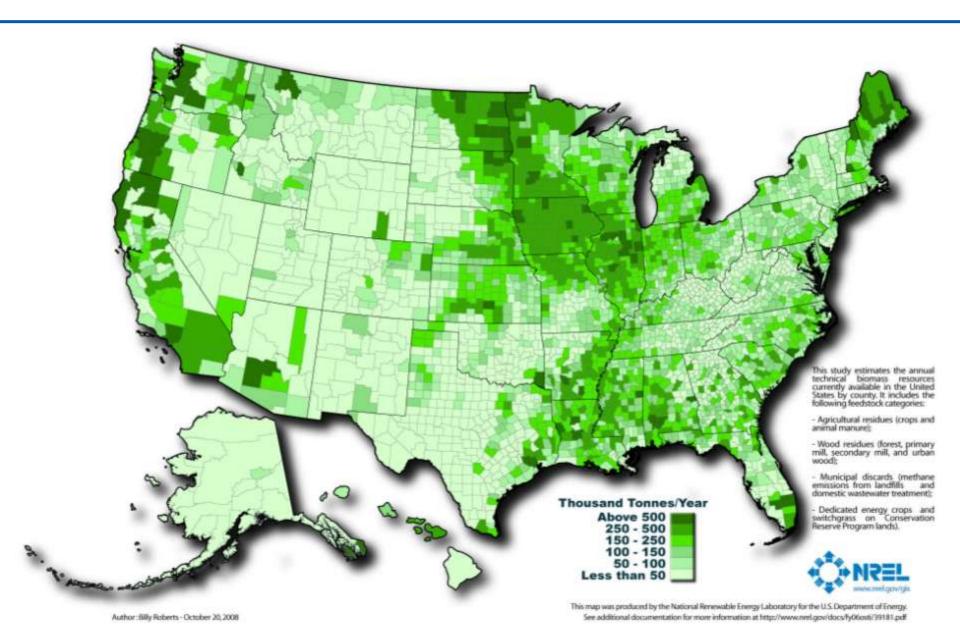
Cost - 0.08 - 0.12 USD/kWh

Potential - Electric Sector

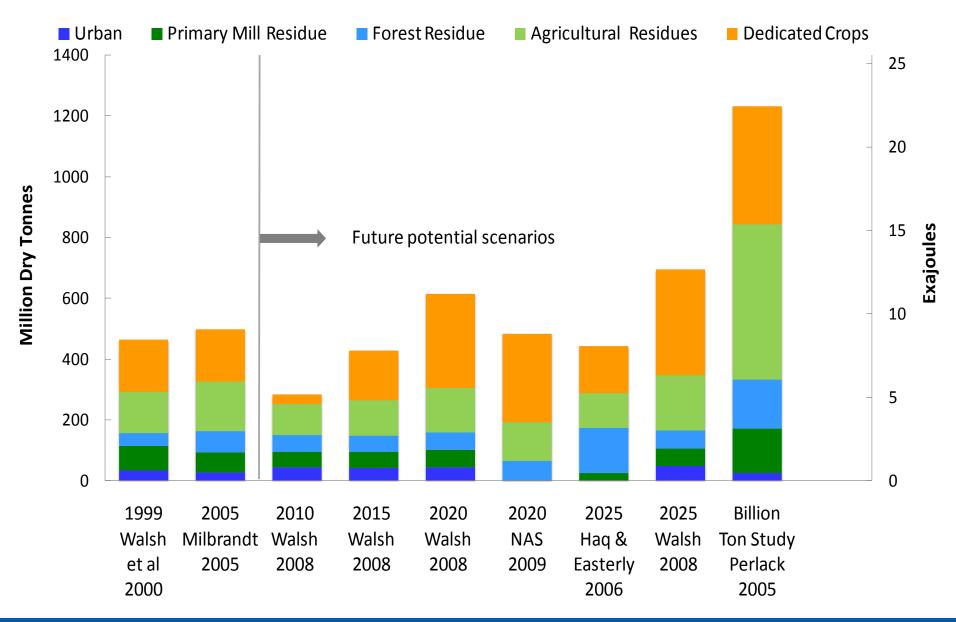
2022 - 22 GW

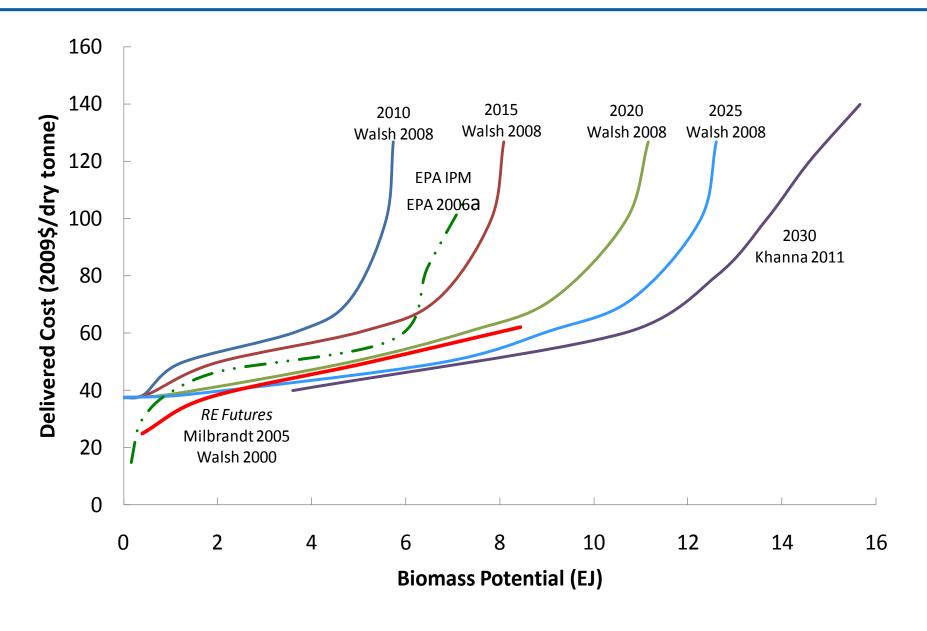

2035 - 48 GW

2050 - 91 GW



Sources: DOE EIA Annual Energy Outlook, Table A16 (year-by-year), NREL Renewable Electricity Futures Study (2010) – Preliminary Data EIA Form 860 (Capacity), EIA Form 923 (Generation)


U.S. Existing Biopower Plants


U.S. Biomass Resource

U.S. Biomass Resource Potential Scenarios

U. S. Biomass Supply Curve Scenarios

U.S. Biomass Gasifier Developers

Organization	Gasifier	Scale			Status	
	Туре	kg/hr	Tonnes/d	kWt	kWe	
Adaptive Arc	plasma					Pilot
Advanced Alternative Energy Corp.						?
Bioten Power & Energy Group	DD-var					Pilot
Bioconversion Technology, LLC	Mixed	25			1000	Demo
Biomass Gas & Electric, LLC	Indirect - dual CFB					Design
Black and Veatch	Dry ash entrained f	low				?
Carbona Corp	FB				5000	Start-up
Chiptec	UD					OP
Clear Fuels	Dry ash indirect					pilot design
Clenergen						?
Community Power Corp	DD	35			25	OP
Cratech						OP
Diversified EnergyCorp	MM					Demo
EERC, ND	CFB, DD					pilot
Thermogenics	DD-var	455-2730				Pilot
Emergy Energy Co.	Mixed UD/DD		10			Const.
Enerkem Technologies	BFB - O2					pilot /Comm. Const
Energy Products of Idaho	FB				6-50 MWe	OP
Energy Quest, Inc. / Syngas International						?
Foster Wheeler	CFB					Comm
FrontLine Bioenergy, LLC	FB					Comm
GAZOGEN	FB				100	OP
Genoray Advanced Technologies, Ltd.	FB					?
GTI Flex-Fuel Gasification	FB	375-750				Pilot

U.S. Biomass Gasifier Developers

Organization	Gasifier	Scale			Status	
	Туре	kg/hr	Tonnes/d	kWt	kWe	
GTS Duratek						OP
Gulf Coast Energy	IND					Pilot
Hamilton Mauer International/MIFGA (HMI, Inc.)	UD					?
HTI - Heat Transfer International	UD					?
ICM Inc.	Air-blown Auger		136 - 181			Demo
InEnTec	Plasma					Piliot
Intellergy - Rockwell	rotary kiln					?
Mississippi Ethanol	IND-E		40			?
Nexterra	UD					OP
Pearson Technologies	IND-E		27.3			OP
Powerhouse Energy	Inductively heated					pilot
Primenergy, LLC	Mod-UD		27.3			OP
PRME	Mod-UD					ОР
Range Fuels	2-stage indirect		>100			shut down
Red Lion Bioenergy						OP
Rentech	Indirect: Dual CFB		320			design
Simeken, Inc.						?
Taylor Biomass						Design
Thermo Technologies LLC	IND	250 TPD				OP
Thermochem	IND	1,800-				OP
TRI (Commercial Arm of Thermochem)						Pilot
Viresco						pilot
Vista International Technologies						?
West Biofuels	Indirect		5			pilot
Westinghouse Plasma	Plasma					OP
Ze-Gen	Molten Salt		ca. 10			?

DOE Integrated Biorefinery Projects

Biomass Program Integrated Biorefinery Platform

http://www1.eere.energy.gov/biomass/integrated_biorefineries.html

DOE Integrated Gasification Biorefinery Projects

http://www1.eere.energy.gov/biomass/integrated_biorefineries.html

DOE Integrated Gasification Biorefinery Projects

→ Range Fuels, USDA Loan Guarantee Enerkem and INEOS Conditional USDA Guarantees; Coskata has conditional USDA Loan Guarantee for project in Boligee, AL

http://www1.eere.energy.gov/biomass/integrated_biorefineries.html

Gasification Technologies

Nexterra Energy Corporation

Johnson Controls Inc. University of South Carolina

JCI/USC Gasification System

Customer:

Johnson Controls Inc. -University of South Carolina

Location:

Columbia, South Carolina

Facility Type:

University

Application:

Cogeneration plant to provide heat and power for university.

Scope of Work:

Supply only of gasification system

Highlights

Start-up:

Q4 2007

Capacity:

60,000 lbs/hr of high pressure

steam for district heating

Power:

1.38 MVV of electricity power

generation

Fuel:

Wood residue (hog fuel)

Fuel moisture content:

25 - 55%

Process

3 gasifiers convert wood biomass to combustible syngas. Syngas is burned in the oxidizer. The hot flue gas is directed through heat recovery steam generator to produce steam. Steam sent to a back pressure turbine to produce electricity. Turbine exhaust steam is distributed to campus heating system.

Gasifiers and metering bins at USC plant

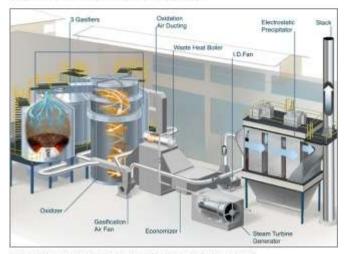


Illustration of Nexterra's gasification system at USC

Enerkem converts waste and residuals into advanced biofuels

A Unique Gasification and Syngas to Biofuels Technology

Wide variety of raw materials

Urban Biomass

- Sorted Municipal Solid Waste
- Institutional, Commercial and Industrial Waste
- Renovation, Construction
 & Demolition Waste
- Treated Wood (railway ties, power poles)

Agricultural Residues

e.g. bagasse, corn stover, wheat straw and rice hulls

Forest Residues

e.g. wood chips, sawdust, bark, thinnings, limbs, tops, needles

Step 2:

Gasification

Conversion of carbon-rich residues into synthetic gas

Step 3:

Synthetic gas conditioning

Cleaning and conditioning process

Step 4:

Conversion into liquid fuel

Catalytic conversion of syngas

Catalytic

reactors

Second generation

ethanol, other advanced

biofuels and

green chemicals

Autothermal Enerkem bubbling fluidized bed gasifier partial oxidation no materials are burned Feedling system Cooling system Washing tower Water Water Water treatment

Recovery of inert material as aggregate for construction materials

Enerkem uses an environmentally friendly process:

- Energy self-sufficient since the chemical reactions in the gasification process produce most of the energy and heat needed.
- Requires little use of water and allows for its reuse in a closed circuit. With certain feedstocks, the process is a net producer of water.
- Compact and decentralized facilities located near feedstock supply.

Mixed Sources Fixed growther and managed fundat growther and managed fundamental section in the fixed and the section in the section of the section in the section of the section in the section in the section of the section in the section in the section of the section in the section in the section of the section in the section in the section of the section in the s

Catalytic

material

Enerkem promotes sustainable development:

 Uses the non-recyclable portion of our waste and creates value from our forest and agricultural residues.

Air/Oxygen

Step 1:

Feedstock

pre-treatment

Drying, sorting

and shredding

- · Produces 360 litres (95 gallons) of ethanol from one tonne of waste (dry base).
- Reduces greenhouse gases by using raw materials that would otherwise produce methane when landfilled and by replacing gasoline produced from petroleum.



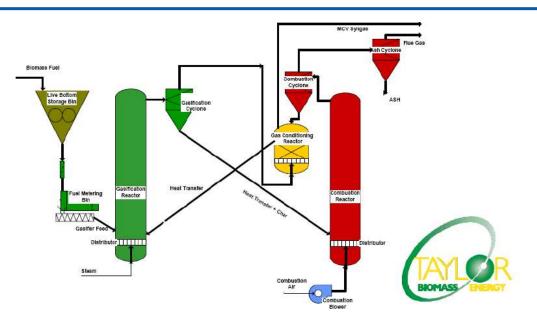
Leading developer and producer of advanced fuels and green chemicals from waste

Rigorous Path to Commercialization

Commercial Wasteto-Ethanol Plant (2012) Pontotoc, Mississippi

Commercial **Demonstration Plant** (2009) Westbury

R&D Center (1999)



Pilot Plant (2003)

Taylor Biomass Energy, LLC

HYDROGEN	45 - 48
CARBON MONOXIDE	15 - 20
METHANE	10 - 13
CARBON DIOXIDE	18 - 20
ETHYLENE	1 - 3
ETHANE	0 - 1
NITROGEN	trace
HHV	14 - 17 MJ/Nm ³

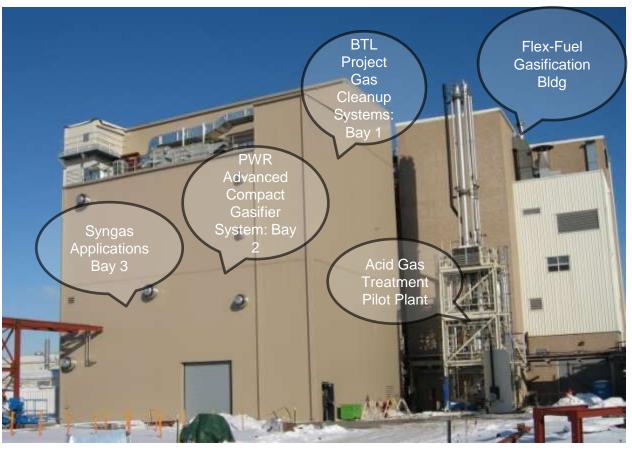
· Montgomery, NY

- MSW + C&D Material
- Modular gasification facility
- Process systems for liquid fuel + hydrogen production
- 24 MW Combined Cycle system
- Sell green energy to NY grid
- Alberta, Canada
 - 24 MW Combined Cycle system
 - Hog fuel / residuals
- Maryland
 - Synthesis to FT liquids

Source: Paisley, M. (2009) Biomass Conf & EXPO, April 28-30, Portland, ORE

Carbona: SKIVE GASIFICATION CHP-PLANT, DENMARK 6 MWe and 12 Mwth

STATUS OF UPM BTL PROJECT


Biomass to	Route:	
liquids	□ FB-gasification	
development	□ Fischer Tropsch synthesis	
	□ Product upgrade	
	□ UPM strengths:	
	Access to raw material	
	Mill integration	
	Close to core business	

Current status

- Exclusive alliance with Andritz/Carbona
- □ Piloting in Gas Technology Institute facility in Des Plaines, IL
- □ Commercial scale plant engineering ongoing & EIA initiated
- □ Site selection process ongoing
- Wood supply chain & logistics survey ongoing

GTI Biomass Gasification Activities

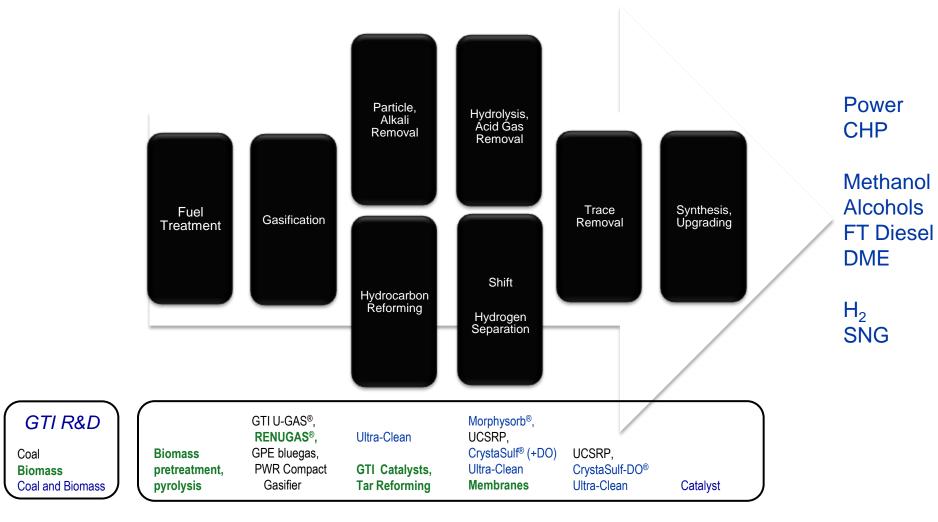
≥ 2nd generation biofuels

- Laboratory & pilot-scale tests for Andritz/Carbona and UPM F-T project
- maximum feed rate of biomass (O2-blown, 25 bar) is 40 tons/day

➤ Syngas cleanup

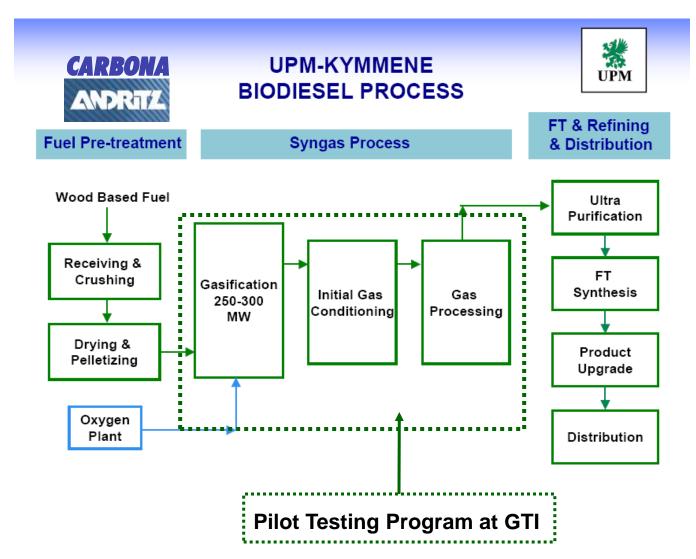
- Warm-gas cleanup train
- Engineered catalysts

\triangleright H₂ production


Membrane reactor system

Biomass pretreatment

Hydrothermal process


Source: GTI

GTI Synthesis Gas Process

Source: GTI

2nd Generation Biofuel Production from Wood by Fluidized Bed Gasification and F-T

Source: GTI

TRI Technology and Projects

TRI's core technology is deep fluidized bed, indirectly-heated, steam reforming of biomass

- Biomass undergoes evaporation, pyrolysis, and gasification in our system; tars are recovered and gasified

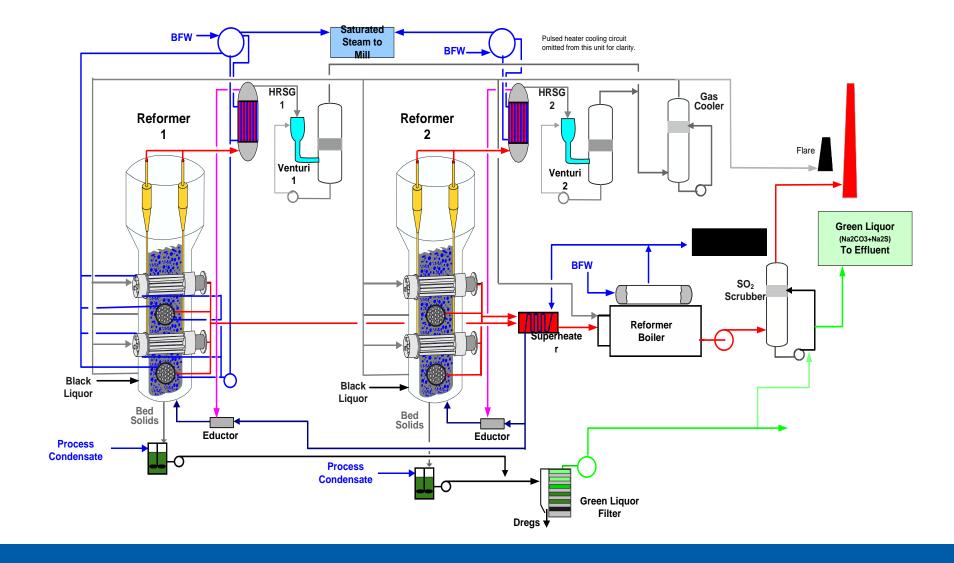
TRI's black liquor gasifier has been commercially operational for six years (Trenton, Ontario)

Two separate DOE "Small-Scale Biorefinery Projects" are employing TRI technology

- NewPage, Wisconsin Rapids, WI; 500 dry tons per day biomass to FT fuels and tail gas. Class 10 study underway (\$30 million award, 2008)
- Flambeau River Biofuels, Park Falls, WI; 1000 dry tons per day biomass to FT fuels. Class 30 completed (\$30 million award, 2008)

State-of-the-art 4 dry ton per day solid biomass pilot plant at Carbon-2-Liquids (C2L) Center, Durham NC

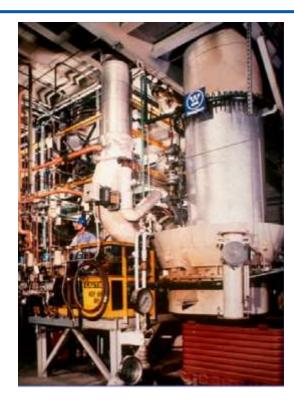
Highly-scalable TRI reformer design: number of PulseEnhancedTM heaters is adjusted within same reformer vessel to meet required throughput level



TRI BL gasifier (top left) at Norampac's Trenton, Ontario plant

Newest TRI PDU in Durham, NC

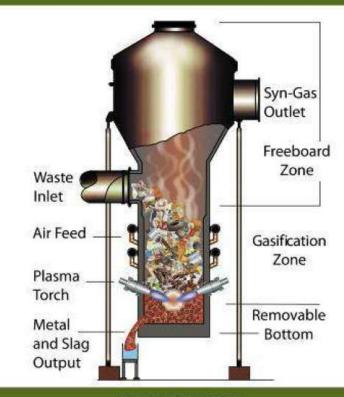
Black Liquor Steam Gasification



TRI Technology and Projects

Coskata – Project Lighthouse

- Semi-commercial demonstration
- Located in Madison, PA
- Partnership between Coskata and Alter NRG
- Technology
 - Gasification Westinghouse Plasma Gasifier
 - Now owned by Alter NRG
 - Coskata Syngas fermentation to ethanol
- Scale 50,000 gal/yr ethanol
 - •100 gal/ton
 - Pine chips
- Status Successful startup announced (Oct 2009)



Alter NRG Gasifier

- The Proprietary Alter Nrg Plasma Gasifier (PG) design is based on the Iron-Melting Cupola Furnace
 - Proven in harsh operating environments
 - Refractory lined steel vessel
 - Lower section is water cooled
 - Able to generate high operating temperature, reducing gas velocities
 - Ash produced as vitreous nonleaching slag
- Typical reactor capacities vary by feedstock:

MSW	500-750 tpd
Biomass	500-750 tpd

Alter Nrg Plasma Gasifier

Hamessing the Power Of Plasma

Alter NRG Simple Process Schematic

Air/Oxygen Steam-Bitumen -► Hydrogen ► Diesel & Petcoke Gasifier Gasoline Syngas Feed Gas Conversion Coal -Methane Handling Clean-up process Biomass → Steam CO2 Waste -▶Power Slag H₂S Aggregate Low \$ Cost Gasifier High \$ Value

Other Plasma/Plasma Assisted Gasifier Developers

- Inentech Chemicals, Idaho & Florida
 - http://www.inentec.com/
 - Projects:
 - Dow Corning, Midland, MI industrial wastes
 - Richland, WA sorted MSW 1 tpd)
 - Inactive Iisuka, JP; Kapolei, HI
- Adaptive ARC, Carlsbad, CA
 - http://www.adaptivearc.com/

Frontline Bioenergy, LLC, Ames, Iowa

Frontline System

Bubbling Fluid Bed

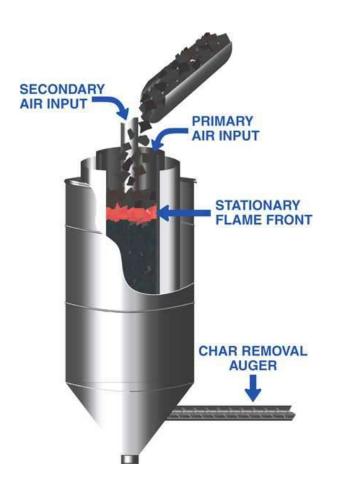
- Fuel flexibility: corn stover, straw, grasses, tramp material
- Robust performance, isothermal: minimal clinkers, bed recycle

Moderate pressure operation

- Greater throughput: single unit, allows shop-built components
- Benefits for Biomass-to-liquids: avoid first stage compression

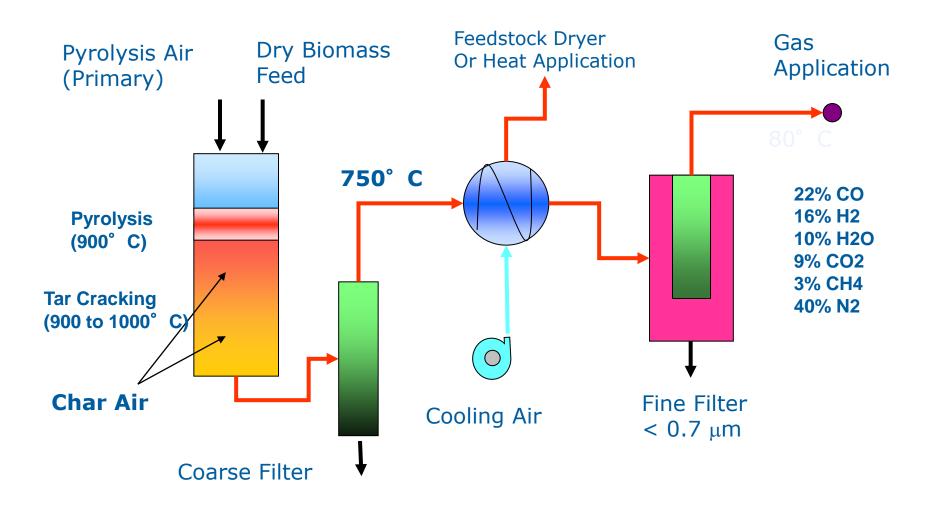
Gas Conditioning

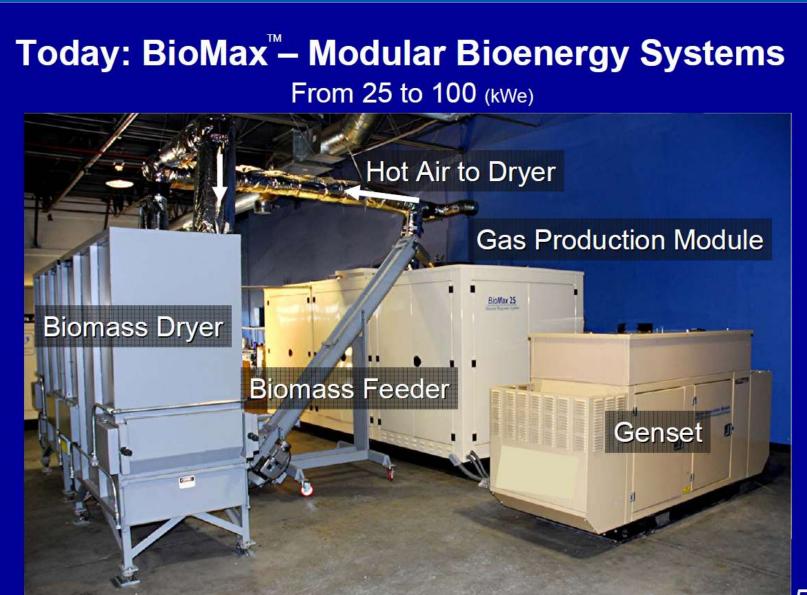
- Novel filtration: removes alkalis and PM, protects downstream boilers and catalytic/biological processes
- Proprietary Tar cleanup: allows multi-burner applications


Upgradeable for Syngas production

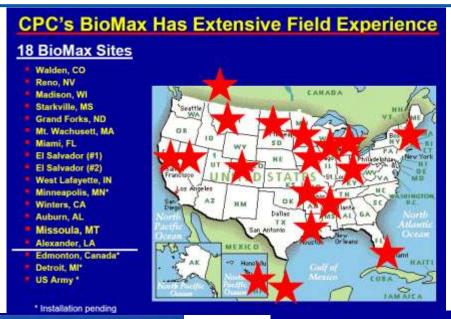
Add oxy/steam system for syngas production

DOE and the USDA Forest Service have supported development Community Power Corporation's BioMax Modular Biopower System


5, 15, 50 kW systems


Credit: Community Power Corp

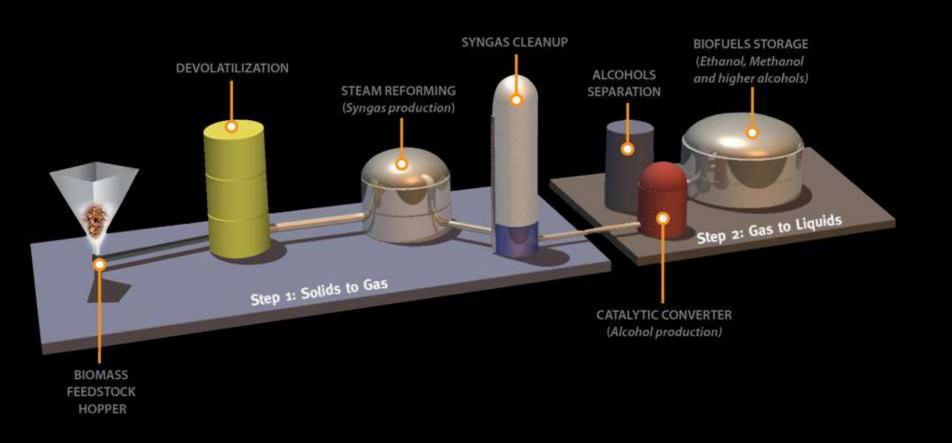
CPC's Process Schematic



70% of Biomass Energy = Chemical Fuel 15% of Biomass Energy = Recoverable Heat, Gas Cooling

Community Power Corporation, Littleton, Colorado

Community Power Corporation, Littleton, Colorado



Prototype Tactical Biorefinery

Mobile encampment feeding waste to energy (gaseous fuels and ethanol)
US Army/Baghdad

Contractors: Community Power Corporation, Purdue University, Defense Life Sciences May 2008

Range Fuels' Thermo-chemical Conversion Technology

Source: Range Fuels

University of California & West Biofuels: Thermochemical Conversion of Biomass to Mixed Alcohols

Research Team: University of California (San Diego, Davis, and Berkeley), West Biofuels LLC.

Location: Woodland Biomass Research Center, Woodland, CA 95776
Contact: Professor Robert Cattolica, PI, UCSD, email: rjcat@ucsd.edu

- 5 ton/day dual-fluidized bed gasifier based on "Pyrox Process"
- Producer Gas 500 BTUs/ft³
- Atmospheric Pressure
- Air blown combustor
- Auto-stabilizing: Bed Level Temperature
- Auto-regeneration of catalyst
- Minimizes replenishment of bed material and catalyst
- Extensive Testing on MSW in Japan (MITI) for power production

 3 units each 150 tons/day

 7 year demonstration

 1983 -1989
- Status: In Start-up

Source: University of California, San Diego

Gulf Coast Energy, Inc

Process: Ethanol production via biomass steam reforming, gas cleanup, mixed alcohol synthesis, alcohol distillation

Gasifier: Indirect entrained flow using

natural gas as fuel

Status: 4.5 tpd pilot unit

Location: Livingston, AL

Questions

